golang java python GC 对比

GOGC

https://mp.weixin.qq.com/s?__biz=MzA4ODg0NDkzOA==&mid=2247487052&idx=2&sn=6e0e7dc6ae74c115e55a42591116b091&source=41#wechat_redirect

Go 的 GC 目前使用的是无分代(对象没有代际之分)、不整理(回收过程中不对对象进行移动与整理)、并发(与用户代码并发执行)的三色标记清扫算法。原因在于:

  1. 对象整理的优势是解决内存碎片问题以及“允许”使用顺序内存分配器。但 Go 运行时的分配算法基于 tcmalloc,基本上没有碎片问题。并且顺序内存分配器在多线程的场景下并不适用。Go 使用的是基于 tcmalloc 的现代内存分配算法,对对象进行整理不会带来实质性的性能提升。

  2. 分代 GC 依赖分代假设,即 GC 将主要的回收目标放在新创建的对象上(存活时间短,更倾向于被回收),而非频繁检查所有对象。但 Go 的编译器会通过逃逸分析将大部分新生对象存储在栈上(栈直接被回收),只有那些需要长期存在的对象才会被分配到需要进行垃圾回收的堆中。也就是说,分代 GC 回收的那些存活时间短的对象在 Go 中是直接被分配到栈上,当 goroutine 死亡后栈也会被直接回收,不需要 GC 的参与,进而分代假设并没有带来直接优势。并且 Go 的垃圾回收器与用户代码并发执行,使得 STW 的时间与对象的代际、对象的 size 没有关系。Go 团队更关注于如何更好地让 GC 与用户代码并发执行(使用适当的 CPU 来执行垃圾回收),而非减少停顿时间这一单一目标上。

4. 三色标记法是什么?

理解三色标记法的关键是理解对象的三色抽象以及波面(wavefront)推进这两个概念。三色抽象只是一种描述追踪式回收器的方法,在实践中并没有实际含义,它的重要作用在于从逻辑上严密推导标记清理这种垃圾回收方法的正确性。也就是说,当我们谈及三色标记法时,通常指标记清扫的垃圾回收。

从垃圾回收器的视角来看,三色抽象规定了三种不同类型的对象,并用不同的颜色相称:

  • 白色对象(可能死亡):未被回收器访问到的对象。在回收开始阶段,所有对象均为白色,当回收结束后,白色对象均不可达。

  • 灰色对象(波面):已被回收器访问到的对象,但回收器需要对其中的一个或多个指针进行扫描,因为他们可能还指向白色对象。

  • 黑色对象(确定存活):已被回收器访问到的对象,其中所有字段都已被扫描,黑色对象中任何一个指针都不可能直接指向白色对象。

这样三种不变性所定义的回收过程其实是一个波面不断前进的过程,这个波面同时也是黑色对象和白色对象的边界,灰色对象就是这个波面。

当垃圾回收开始时,只有白色对象。随着标记过程开始进行时,灰色对象开始出现(着色),这时候波面便开始扩大。当一个对象的所有子节点均完成扫描时,会被着色为黑色。当整个堆遍历完成时,只剩下黑色和白色对象,这时的黑色对象为可达对象,即存活;而白色对象为不可达对象,即死亡。这个过程可以视为以灰色对象为波面,将黑色对象和白色对象分离,使波面不断向前推进,直到所有可达的灰色对象都变为黑色对象为止的过程。

java 

 

Python 

  • 引用计数式 GC每个对象自身包含一个被引用的计数器,当计数器归零时自动得到回收。因为此方法缺陷较多,在追求高性能时通常不被应用

你可能感兴趣的:(golang java python GC 对比)