MapReduce中Combiner的作用和用法

MapReduce中Combiner的作用和用法

①每一个map可能会产生大量的输出,Combiner的作用就是在map端对输出先做一次合并,以减少传输到reducer的数据量。
②Combiner最基本是实现本地key的归并,Combiner具有类似本地的reduce功能。
如果不用Combiner,那么,所有的结果都是reduce完成,效率会相对低下。
使用Combiner,先完成的map会在本地聚合,提升速度。
注意:Combiner的输出是Reducer的输入,如果Combiner是可插拔的,添加Combiner绝不能改变最终的计算结果。所以Combiner只应该用于那种Reduce的输入key/value与输出key/value类型完全一致,且不影响最终结果的场景。比如累加,最大值等。

③代码实例

package com.sl.bigdatatest.mapreduce;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

    public static void main(String[] args) throws Exception {

        if (args.length < 2) {
            System.err.println("Uage: ");
            System.exit(2);
        }

        String inputPath = args[0];
        Path outputPath = new Path(args[1]);

        //1.configuration
        Configuration conf = new Configuration();
        URI uri = new URI("hdfs://192.168.0.200:9000");
        FileSystem fileSystem = FileSystem.get(uri, conf);

        if (fileSystem.exists(outputPath)) {
            boolean b = fileSystem.delete(outputPath, true);
            System.out.println("已存在目录删除:"+b);
        }

        //2.建立job
        Job job = Job.getInstance(conf, WordCount.class.getName());
        job.setJarByClass(WordCount.class);

        //3.输入文件
        FileInputFormat.setInputPaths(job, new Path(inputPath));

        //4.格式化输入文件
        job.setInputFormatClass(TextInputFormat.class);

        //5.map
        job.setMapperClass(MapWordCountTask.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);

        //6.reduce
        job.setReducerClass(ReduceWordCountTask.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);

        /**指定本job使用combiner组件,组件所用的类为ReduceWordCountTask**/
        job.setCombinerClass(ReduceWordCountTask.class);

        //7.输出文件
        FileOutputFormat.setOutputPath(job, outputPath);

        //8.输出文件格式化
        job.setOutputFormatClass(TextOutputFormat.class);

        //9.提交给集群执行
        job.waitForCompletion(true);

    }

    public static class MapWordCountTask extends Mapper {

        private Text k2 = new Text();
        private LongWritable v2 = new LongWritable();

        @Override
        protected void map(LongWritable key, Text value, Context context) throws Exception {
            String content = value.toString();
            StringTokenizer st = new StringTokenizer(content);
            while (st.hasMoreElements()) {
                k2.set(st.nextToken());
                v2.set(1L);
                context.write(k2, v2);
            }
        }
    }

    public static class ReduceWordCountTask extends Reducer {

        private LongWritable v3 = new LongWritable();

        @Override
        protected void reduce(Text k2, Iterable v2s,Context context) throws Exception {
            long sum = 0;
            for (LongWritable longWritable : v2s) {
                sum += longWritable.get();
                v3.set(sum);
            }
            context.write(k2, v3);
        }
    }
}

你可能感兴趣的:(MapReduce)