本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
https://github.com/h2pl/Java-Tutorial
喜欢的话麻烦点下Star哈
文章首发于我的个人博客:
www.how2playlife.com
本文是微信公众号【Java技术江湖】的《走进JavaWeb技术世界》其中一篇,本文部分内容来源于网络,为了把本文主题讲得清晰透彻,也整合了很多我认为不错的技术博客内容,引用其中了一些比较好的博客文章,如有侵权,请联系作者。
该系列博文会告诉你如何从入门到进阶,从servlet到框架,从ssm再到SpringBoot,一步步地学习JavaWeb基础知识,并上手进行实战,接着了解JavaWeb项目中经常要使用的技术和组件,包括日志组件、Maven、Junit,等等内容,以便让你更完整地了解整个JavaWeb技术体系,形成自己的知识框架。为了更好地总结和检验你的学习成果,本系列文章也会提供每个知识点对应的面试题以及参考答案。
如果对本系列文章有什么建议,或者是有什么疑问的话,也可以关注公众号【Java技术江湖】联系作者,欢迎你参与本系列博文的创作和修订。
文末赠送8000G的Java架构师学习资料,需要的朋友可以到文末了解领取方式,资料包括Java基础、进阶、项目和架构师等免费学习资料,更有数据库、分布式、微服务等热门技术学习视频,内容丰富,兼顾原理和实践,另外也将赠送作者原创的Java学习指南、Java程序员面试指南等干货资源)
今天我们来探索一下HashMap和HashTable机制与比较器的源码。
本文参考http://cmsblogs.com/?p=176
HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。下面就来分析HashMap的存取。
HashMap实现了Map接口,继承AbstractMap。其中Map接口定义了键映射到值的规则,而AbstractMap类提供 Map 接口的骨干实现,以最大限度地减少实现此接口所需的工作,其实AbstractMap类已经实现了Map,这里标注Map LZ觉得应该是更加清晰吧!
public class HashMap
extends AbstractMap
implements Map, Cloneable, Serializable
HashMap提供了三个构造函数:
HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。
HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。
HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap。
在这里提到了两个参数:初始容量,加载因子。
这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。
对于使用链表法的散列表来说,查找一个元素的平均时间是O(1 a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。
HashMap是一种支持快速存取的数据结构,要了解它的性能必须要了解它的数据结构。
我们知道在Java中最常用的两种结构是数组和模拟指针(引用),几乎所有的数据结构都可以利用这两种来组合实现,HashMap也是如此。实际上HashMap是一个“链表散列”,如下是它的数据结构:
HashMap数据结构图
下图的table数组的每个格子都是一个桶。负载因子就是map中的元素占用的容量百分比。比如负载因子是0.75,初始容量(桶数量)为16时,那么允许装填的元素最大个数就是16*0.75 = 12,这个最大个数也被成为阈值,就是map中定义的threshold。超过这个阈值时,map就会自动扩容。
首先我们先看源码
public V put(K key, V value) {
//当key为null,调用putForNullKey方法,保存null与table第一个位置中,这是HashMap允许为null的原因
if (key == null)
return putForNullKey(value);
//计算key的hash值,此处对原来元素的hashcode进行了再次hash
int hash = hash(key.hashCode()); ------(1)
//计算key hash 值在 table 数组中的位置
int i = indexFor(hash, table.length); ------(2)
//从i出开始迭代 e,找到 key 保存的位置
for (Entry e = table[i]; e != null; e = e.next) {
Object k;
//判断该条链上是否有hash值相同的(key相同)
//若存在相同,则直接覆盖value,返回旧value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value; //旧值 = 新值
e.value = value;
e.recordAccess(this);
return oldValue; //返回旧值
}
}
//修改次数增加1
modCount ;
//将key、value添加至i位置处
addEntry(hash, key, value, i);
return null;
}
通过源码我们可以清晰看到HashMap保存数据的过程为:首先判断key是否为null,若为null,则直接调用putForNullKey方法。
若不为空则先计算key的hash值,然后根据hash值搜索在table数组中的索引位置,如果table数组在该位置处有元素,则通过比较是否存在相同的key,若存在则覆盖原来key的value,==否则将该元素保存在链头(最先保存的元素放在链尾)==。
若table在该处没有元素,则直接保存。这个过程看似比较简单,其实深有内幕。有如下几点:
1、 先看迭代处。此处迭代原因就是为了防止存在相同的key值,若发现两个hash值(key)相同时,HashMap的处理方式是用新value替换旧value,这里并没有处理key,这就解释了HashMap中没有两个相同的key。
2、 在看(1)、(2)处。这里是HashMap的精华所在。首先是hash方法,该方法为一个纯粹的数学计算,就是计算h的hash值。
static int hash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
我们知道对于HashMap的table而言,数据分布需要均匀(最好每项都只有一个元素,这样就可以直接找到),不能太紧也不能太松,太紧会导致查询速度慢,太松则浪费空间。计算hash值后,怎么才能保证table元素分布均与呢?我们会想到取模,但是由于取模的消耗较大,HashMap是这样处理的:调用indexFor方法。
static int indexFor(int h, int length) {
return h & (length-1);
}
HashMap的底层数组长度总是2的n次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length - 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。
==对length取模来得到hash是常用的hash索引方法,这里采用位运算的话效率更高。==
我们回到indexFor方法,该方法仅有一条语句:h&(length - 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布table数据和充分利用空间。
这里我们假设length为16(2^n)和15,h为5、6、7。
当n=15时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看0-15。
而当length = 16时,length – 1 = 15 即1111,那么进行低位&运算时,值总是与原来hash值相同,而进行高位运算时,其值等于其低位值。所以说当length = 2^n时,不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。
这里我们再来复习put的流程:当我们想一个HashMap中添加一对key-value时,系统首先会计算key的hash值,然后根据hash值确认在table中存储的位置。若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其key的hash值。
如果两个hash值相等且key值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的Entry的value覆盖原来节点的value。如果两个hash值相等但key值不等 ,则将该节点插入该链表的链头。具体的实现过程见addEntry方法,如下:
void addEntry(int hash, K key, V value, int bucketIndex) {
//获取bucketIndex处的Entry
Entry e = table[bucketIndex];
//将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry
table[bucketIndex] = new Entry(hash, key, value, e);
//若HashMap中元素的个数超过极限了,则容量扩大两倍
if (size >= threshold)
resize(2 * table.length);
}
这个方法中有两点需要注意:
后面添加的entry反而会接到前面。
一、是链的产生。
这是一个非常优雅的设计。系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。
二、扩容问题。
随着HashMap中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响HashMap的速度,为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理。
该临界点在当HashMap中元素的数量等于table数组长度*加载因子。但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新table数组中的位置并进行复制处理。所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node[] tab; Node p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果p是红黑树节点,则用另外的处理方法
else if (p instanceof TreeNode)
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//当链表节点数超过8个,则直接进行红黑树化。
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
modCount;
if ( size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
JDK1.8在链表长度超过8时会转换为红黑树。转换方法如下:
final void treeifyBin(Node[] tab, int hash) {
int n, index; Node e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
//如果节点数变小小于红黑树的节点数阈值时,调整空间
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode hd = null, tl = null;
do {
//该方法直接返回一个红黑树结点。
TreeNode p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
//从链表头开始依次插入红黑树
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
// For treeifyBin
TreeNode replacementTreeNode(Node p, Node next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}
final Node[] resize() {
Node[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//如果原容量大于最大空间,则让阈值为最大值。因为不能再扩容了,最大容量就是整数最大值。
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//两倍扩容,阈值也跟着变为两倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node[] newTab = (Node[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; j) {
Node e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
//当后面没有节点时,直接插入即可 //每个元素重新计算索引位置,此处的hash值并没有变,只是改变索引值
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode)e).split(this, newTab, j, oldCap);
else { // preserve order
//否则,就从头到尾依次将节点进行索引然后插入新数组,这样插入后的链表顺序会和原来的顺序相反。
Node loHead = null, loTail = null;
Node hiHead = null, hiTail = null;
Node next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
相对于HashMap的存而言,取就显得比较简单了。通过key的hash值找到在table数组中的索引处的Entry,然后返回该key对应的value即可。
public V get(Object key) {
// 若为null,调用getForNullKey方法返回相对应的value
if (key == null)
return getForNullKey();
// 根据该 key 的 hashCode 值计算它的 hash 码
int hash = hash(key.hashCode());
// 取出 table 数组中指定索引处的值
for (Entry e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
Object k;
//若搜索的key与查找的key相同,则返回相对应的value
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}
在这里能够根据key快速的取到value除了和HashMap的数据结构密不可分外,还和Entry有莫大的关系,在前面就提到过,HashMap在存储过程中并没有将key,value分开来存储,而是当做一个整体key-value来处理的,这个整体就是Entry对象。
同时value也只相当于key的附属而已。在存储的过程中,系统根据key的hashcode来决定Entry在table数组中的存储位置,在取的过程中同样根据key的hashcode取出相对应的Entry对象。
在java中与有两个类都提供了一个多种用途的hashTable机制,他们都可以将可以key和value结合起来构成键值对通过put(key,value)方法保存起来,然后通过get(key)方法获取相对应的value值。
一个是前面提到的HashMap,还有一个就是马上要讲解的HashTable。对于HashTable而言,它在很大程度上和HashMap的实现差不多,如果我们对HashMap比较了解的话,对HashTable的认知会提高很大的帮助。他们两者之间只存在几点的不同,这个后面会阐述。
HashTable在Java中的定义如下:
public class Hashtable
extends Dictionary
implements Map, Cloneable, java.io.Serializable
从中可以看出HashTable继承Dictionary类,实现Map接口。其中Dictionary类是任何可将键映射到相应值的类(如 Hashtable)的抽象父类。每个键和每个值都是一个对象。在任何一个 Dictionary 对象中,每个键至多与一个值相关联。Map是"key-value键值对"接口。
HashTable采用"拉链法"实现哈希表,它定义了几个重要的参数:table、count、threshold、loadFactor、modCount。
table:为一个Entry[]数组类型,Entry代表了“拉链”的节点,每一个Entry代表了一个键值对,哈希表的"key-value键值对"都是存储在Entry数组中的。
count:HashTable的大小,注意这个大小并不是HashTable的容器大小,而是他所包含Entry键值对的数量。
threshold:Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值="容量*加载因子"。
loadFactor:加载因子。
modCount:用来实现“fail-fast”机制的(也就是快速失败)。所谓快速失败就是在并发集合中,其进行迭代操作时,若有其他线程对其进行结构性的修改,这时迭代器会立马感知到,并且立即抛出ConcurrentModificationException异常,而不是等到迭代完成之后才告诉你(你已经出错了)。
在HashTabel中存在5个构造函数。通过这5个构造函数我们构建出一个我想要的HashTable。
public Hashtable() {
this(11, 0.75f);
}
默认构造函数,容量为11,加载因子为0.75。
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
用指定初始容量和默认的加载因子 (0.75) 构造一个新的空哈希表。
public Hashtable(int initialCapacity, float loadFactor) {
//验证初始容量
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "
initialCapacity);
//验证加载因子
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: " loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
//初始化table,获得大小为initialCapacity的table数组
table = new Entry[initialCapacity];
//计算阀值
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE 1);
//初始化HashSeed值
initHashSeedAsNeeded(initialCapacity);
}
用指定初始容量和指定加载因子构造一个新的空哈希表。其中initHashSeedAsNeeded方法用于初始化hashSeed参数,其中hashSeed用于计算key的hash值,它与key的hashCode进行按位异或运算。这个hashSeed是一个与实例相关的随机值,主要用于解决hash冲突。
private int hash(Object k) {
return hashSeed ^ k.hashCode();
}
构造一个与给定的 Map 具有相同映射关系的新哈希表。
public Hashtable(Map extends K, ? extends V> t) {
//设置table容器大小,其值==t.size * 2 1
this(Math.max(2*t.size(), 11), 0.75f);
putAll(t);
}
HashTable的API对外提供了许多方法,这些方法能够很好帮助我们操作HashTable,但是这里我只介绍两个最根本的方法:put、get。
首先我们先看put方法:将指定 key 映射到此哈希表中的指定 value。注意这里键key和值value都不可为空。
public synchronized V put(K key, V value) {
// 确保value不为null
if (value == null) {
throw new NullPointerException();
}
/*
* 确保key在table[]是不重复的
* 处理过程:
* 1、计算key的hash值,确认在table[]中的索引位置
* 2、迭代index索引位置,如果该位置处的链表中存在一个一样的key,则替换其value,返回旧值
*/
Entry tab[] = table;
int hash = hash(key); //计算key的hash值
int index = (hash & 0x7FFFFFFF) % tab.length; //确认该key的索引位置
//迭代,寻找该key,替换
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V old = e.value;
e.value = value;
return old;
}
}
modCount ;
if (count >= threshold) { //如果容器中的元素数量已经达到阀值,则进行扩容操作
rehash();
tab = table;
hash = hash(key);
index = (hash & 0x7FFFFFFF) % tab.length;
}
// 在索引位置处插入一个新的节点
Entry e = tab[index];
tab[index] = new Entry<>(hash, key, value, e);
//容器中元素 1
count ;
return null;
}
put方法的整个处理流程是:计算key的hash值,根据hash值获得key在table数组中的索引位置,然后迭代该key处的Entry链表(我们暂且理解为链表),若该链表中存在一个这个的key对象,那么就直接替换其value值即可,否则在将改key-value节点插入该index索引位置处
在HashTabled的put方法中有两个地方需要注意:
1、HashTable的扩容操作,在put方法中,如果需要向table[]中添加Entry元素,会首先进行容量校验,如果容量已经达到了阀值,HashTable就会进行扩容处理rehash(),如下:
protected void rehash() {
int oldCapacity = table.length;
//元素
Entry[] oldMap = table;
//新容量=旧容量 * 2 1
int newCapacity = (oldCapacity << 1) 1;
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
return;
newCapacity = MAX_ARRAY_SIZE;
}
//新建一个size = newCapacity 的HashTable
Entry[] newMap = new Entry[];
modCount ;
//重新计算阀值
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE 1);
//重新计算hashSeed
boolean rehash = initHashSeedAsNeeded(newCapacity);
table = newMap;
//将原来的元素拷贝到新的HashTable中
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry old = oldMap[i] ; old != null ; ) {
Entry e = old;
old = old.next;
if (rehash) {
e.hash = hash(e.key);
}
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = newMap[index];
newMap[index] = e;
}
}
}
在这个rehash()方法中我们可以看到容量扩大两倍 1,同时需要将原来HashTable中的元素一一复制到新的HashTable中,这个过程是比较消耗时间的,同时还需要重新计算hashSeed的,毕竟容量已经变了。
这里对阀值啰嗦一下:比如初始值11、加载因子默认0.75,那么这个时候阀值threshold=8,当容器中的元素达到8时,HashTable进行一次扩容操作,容量 = 8 2 1 =17,而阀值threshold=170.75 = 13,当容器元素再一次达到阀值时,HashTable还会进行扩容操作,依次类推。
下面是计算key的hash值,这里hashSeed发挥了作用。
private int hash(Object k) {
return hashSeed ^ k.hashCode();
}
相对于put方法,get方法就会比较简单,处理过程就是计算key的hash值,判断在table数组中的索引位置,然后迭代链表,匹配直到找到相对应key的value,若没有找到返回null。
public synchronized V get(Object key) {
Entry tab[] = table;
int hash = hash(key);
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return e.value;
}
}
return null;
}
HashTable和HashMap存在很多的相同点,但是他们还是有几个比较重要的不同点。
第一:我们从他们的定义就可以看出他们的不同,HashTable基于Dictionary类,而HashMap是基于AbstractMap。Dictionary是什么?它是任何可将键映射到相应值的类的抽象父类,而AbstractMap是基于Map接口的骨干实现,它以最大限度地减少实现此接口所需的工作。
第二:HashMap可以允许存在一个为null的key和任意个为null的value,但是HashTable中的key和value都不允许为null。如下:
当HashMap遇到为null的key时,它会调用putForNullKey方法来进行处理。对于value没有进行任何处理,只要是对象都可以。
if (key == null)
return putForNullKey(value);
而当HashTable遇到null时,他会直接抛出NullPointerException异常信息。
if (value == null) {
throw new NullPointerException();
}
第三:Hashtable的方法是同步的,而HashMap的方法不是。所以有人一般都建议如果是涉及到多线程同步时采用HashTable,没有涉及就采用HashMap,但是在Collections类中存在一个静态方法:synchronizedMap(),该方法创建了一个线程安全的Map对象,并把它作为一个封装的对象来返回,所以通过Collections类的synchronizedMap方法是可以我们你同步访问潜在的HashMap。这样君该如何选择呢???
HashMap线程不安全,HashTable是线程安全的。HashMap内部实现没有任何线程同步相关的代码,所以相对而言性能要好一点。如果在多线程中使用HashMap需要自己管理线程同步。HashTable大部分对外接口都使用synchronized包裹,所以是线程安全的,但是性能会相对差一些。
二者的基类不一样。HashMap派生于AbstractMap,HashTable派生于Dictionary。它们都实现Map, Cloneable, Serializable这些接口。AbstractMap中提供的基础方法更多,并且实现了多个通用的方法,而在Dictionary中只有少量的接口,并且都是abstract类型。
key和value的取值范围不同。HashMap的key和value都可以为null,但是HashTablekey和value都不能为null。对于HashMap如果get返回null,并不能表明HashMap不存在这个key,如果需要判断HashMap中是否包含某个key,就需要使用containsKey这个方法来判断。
算法不一样。HashMap的initialCapacity为16,而HashTable的initialCapacity为11。HashMap中初始容量必须是2的幂,如果初始化传入的initialCapacity不是2的幂,将会自动调整为大于出入的initialCapacity最小的2的幂。HashMap使用自己的计算hash的方法(会依赖key的hashCode方法),HashTable则使用key的hashCode方法得到。
http://cmsblogs.com/?p=176
http://mini.eastday.com/mobile/180310183019559.html#
https://blog.csdn.net/lihua5419/article/details/87691965
https://www.cnblogs.com/aeolian/p/8468632.html
黄小斜是 985 硕士,阿里巴巴Java工程师,在自学编程、技术求职、Java学习等方面有丰富经验和独到见解,希望帮助到更多想要从事互联网行业的程序员们。作者专注于 JAVA 后端技术栈,热衷于分享程序员干货、学习经验、求职心得,以及自学编程和Java技术栈的相关干货。黄小斜是一个斜杠青年,坚持学习和写作,相信终身学习的力量,希望和更多的程序员交朋友,一起进步和成长!
原创电子书:关注微信公众号【程序员黄小斜】后回复【原创电子书】即可领取我原创的电子书《菜鸟程序员修炼手册:从技术小白到阿里巴巴Java工程师》这份电子书总结了我2年的Java学习之路,包括学习方法、技术总结、求职经验和面试技巧等内容,已经帮助很多的程序员拿到了心仪的offer!
程序员3T技术学习资源: 一些程序员学习技术的资源大礼包,关注公众号后,后台回复关键字 “资料” 即可免费无套路获取,包括Java、python、C 、大数据、机器学习、前端、移动端等方向的技术资料。
如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的微信公众号【Java技术江湖】
这是一位阿里 Java 工程师的技术小站。作者黄小斜,专注 Java 相关技术:SSM、SpringBoot、MySQL、分布式、中间件、集群、Linux、网络、多线程,偶尔讲点Docker、ELK,同时也分享技术干货和学习经验,致力于Java全栈开发!
Java工程师必备学习资源:关注公众号后回复”Java“即可领取 Java基础、进阶、项目和架构师等免费学习资料,更有数据库、分布式、微服务等热门技术学习视频,内容丰富,兼顾原理和实践,另外也将赠送作者原创的Java学习指南、Java程序员面试指南等干货资源