codeforce div2 1389 A-C题解:

A:
思路:
枚举一下 l l l的倍数查看是否存在有解区间即可,当然 l ∗ k < = r l*k<=r lk<=r

参考代码:

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <math.h>
using namespace std;
typedef long long ll;
const int N = 1e3 + 5;
const int maxn = 3e5 + 5;
map<ll, ll> mp;
int pre[maxn], vis[30];
char dp[maxn];
vector<ll> vec;
typedef pair<char, int> p;
stack<p> q;
ll a[maxn], sum[maxn];
char pc[maxn];
char s[maxn];
ll gcd(ll a, ll b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
    return (a * b) / gcd(a, b);
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    //cout << gcd(2, 4) << endl;
    int t;
    cin >> t;
    while (t--)
    {
        ll n, m, k = 2, l, r, ql, qr;
        ql = qr = -1;
        cin >> l >> r;
        while (l * k <= r)
        {
            if (lcm(l, l * k) <= r)
            {
                ql = l, qr = k * l;
                break;
            }
        }
        cout << ql << ' ' << qr << endl;
    }
}

B:
z z z的范围在 m i n ( 5 , k ) min(5,k) min(5,k),显然可以进行 d p dp dp
思路:
找到当前点到往回走 j ( 1 − > z ) j(1->z) j(1>z)次的动态转移方程,如果当前走的步数等于k时更新答案即可。

参考代码:

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <math.h>
using namespace std;
typedef long long ll;
const int N = 1e3 + 5;
const int maxn = 1e5 + 5;
map<ll, ll> mp;
int pre[maxn], vis[30];
//char dp[maxn];
vector<ll> vec;
typedef pair<char, int> p;
stack<p> q;
int a[maxn], sum[maxn];
char pc[maxn];
char s[maxn];
int dp[maxn][10];
ll gcd(ll a, ll b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
    return (a * b) / gcd(a, b);
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    //cout << gcd(2, 4) << endl;
    int t;
    cin >> t;
    while (t--)
    {
        memset(dp, 0, sizeof dp);
        int n, k, z, ans = 0;
        cin >> n >> k >> z;
        for (int i = 1; i <= n; i++)
            cin >> a[i];
        dp[1][0] = a[1];
        for (int i = 2; i <= n; i++)
        {
            dp[i][0] = dp[i - 1][0] + a[i];
            if (i - 1 == k)
                ans = max(dp[i][0], ans);
            for (int j = 1; j <= z; j++)
            {
                for (int p = 0; p <= j; p++)
                {
                    dp[i][j] = max(dp[i][j], dp[i - 1][j - p] + (a[i] + a[i - 1]) * p + a[i]);
                    if (i - 1 + j * 2 == k)
                        ans = max(ans, dp[i][j]);
                    if (i + j * 2 - 2 == k)
                        ans = max(ans, dp[i][j] - a[i]);
                }
            }
        }
        cout << ans << endl;
    }
}

C:
这题显然比B题要简单很多
思路:
显然可以知道符合条件的循环节是两个数字组成的,呢么我们直接暴力即可
证明一下时间复杂度:
codeforce div2 1389 A-C题解:_第1张图片
注意需要考虑相同字符的情况

参考代码:

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <math.h>
using namespace std;
typedef long long ll;
const int N = 1e3 + 5;
const int maxn = 1e5 + 5;
map<string, int> mp;
int pre[maxn], vis[30];
//char dp[maxn];
vector<ll> vec;
typedef pair<char, int> p;
stack<p> q;
// int a[maxn], sum[maxn];
// char pc[maxn];
// char s[maxn];
int dp[maxn][10], cnt;
ll gcd(ll a, ll b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
    return (a * b) / gcd(a, b);
}
string cs[N];
void init()
{
    for (int i = 0; i < 10; i++)
        for (int j = 0; j < 10; j++)
            cs[cnt] += (i + '0'), cs[cnt++] += (j + '0');
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    int t;
    init();
    // for (int i = 0; i < cnt; i++)
    //     cout << cs[i] << endl;
    cin >> t;
    while (t--)
    {
        mp.clear();
        string s;
        cin >> s;
        int n = s.size(), k1, k2;
        k1 = k2 = 0;
        for (int i = 0; i < cnt; i++)
        {
            k1 = k2 = 0;
            for (int j = 0; j < n; j++)
            {
                if (cs[i][0] == s[j] && !k1)
                    k1 = 1;
                if (cs[i][1] == s[j] && k1)
                    k2 = 1;
                if (k1 && k2)
                    mp[cs[i]]++, k1 = k2 = 0;
            }
        }
        int ans = 0;
        for (int i = 0; i < cnt; i++)
        {
            if (cs[i][0] == cs[i][1])
                ans = max(ans, mp[cs[i]]);
            else
                ans = max(ans, mp[cs[i]] * 2);
        }
        cout << n - ans << endl;
    }
}

你可能感兴趣的:(acm_问题解析)