Harvest of Apples(分块思想)

Problem B. Harvest of Apples

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2177    Accepted Submission(s): 847


 

Problem Description

There are n apples on a tree, numbered from 1 to n.
Count the number of ways to pick at most m apples.

 

 

Input

The first line of the input contains an integer T (1≤T≤105) denoting the number of test cases.
Each test case consists of one line with two integers n,m (1≤mn≤105).

 

 

Output

For each test case, print an integer representing the number of ways modulo 109+7.

 

 

Sample Input

 

2 5 2 1000 500

 

 

Sample Output

 

16 924129523

 

 

Source

2018 Multi-University Training Contest 4

 

 

Recommend

chendu   |   We have carefully selected several similar problems for you:  6343 6342 6341 6340 6339 

分析:将n分成block块预处理一下。由杨辉三角推得以下公式。

Harvest of Apples(分块思想)_第1张图片

下面就是针对以上式子进行分块了。

1、先说一下分块思想。首先,如果不分块预处理的话那么可以暴力1~n,逐个求和。分块就是不爆力1~n,我们每隔block(block一般为根号下n)就暴力求一次求和。对于当前n我们找一个离着n最近的已经被分块暴力出的答案,由这个答案向n转移。这样复杂度就降低了。当然对于小于block的n直接暴力求就可以了。

2、用数组sum[i][j]代表C(n,j)的前缀和。i是从block开始加每次增加block。

3、用d数组预处暴力求得n

4、分情况讨论,n

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define INF 0x3f3f3f3f
#define FAST_IO ios::sync_with_stdio(false)
const double PI = acos(-1.0);
const double eps = 1e-6;
const int MAX=1e5+10;
const int mod=1e9+7;
typedef long long ll;
using namespace std;
#define gcd(a,b) __gcd(a,b)
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
inline ll qpow(ll a,ll b){ll r=1,t=a; while(b){if(b&1)r=(r*t)%mod;b>>=1;t=(t*t)%mod;}return r;}
inline ll inv1(ll b){return qpow(b,mod-2);}
inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll r=exgcd(b,a%b,y,x);y-=(a/b)*x;return r;}
inline ll read(){ll x=0,f=1;char c=getchar();for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;for(;isdigit(c);c=getchar()) x=x*10+c-'0';return x*f;}
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );

int n,m,block=333;
int fac[MAX+3];
int inv[MAX+3];
int sum[100010/333+1][MAX];
int d[400][400];

void init()
{
    fac[0]=1;
    for(int i=1;i<=MAX;i++) fac[i]=fac[i-1]*1ll*i%mod;
    inv[MAX]=qpow(fac[MAX],mod-2);
    for(int i=MAX-1;~i;i--) inv[i]=inv[i+1]*1ll*(i+1)%mod;
}

int C(int n,int m)
{
    if(m>n) return 0;
    if(m==n || m==0) return 1;
    return fac[n]*1ll*inv[n-m]%mod*inv[m]%mod;
}

void fk()
{
    for(int i=block;i


 

你可能感兴趣的:(简单算法)