接口,是Java语言中一种引用类型,是方法的集合,如果说类的内部封装了成员变量、构造方法和成员方法,那么接口的内部主要就是封装了方法,包含抽象方法(JDK 7及以前),默认方法和静态方法(JDK 8),私有方法(JDK 9)。
接口的定义,它与定义类方式相似,但是使用 interface
关键字。它也会被编译成.class文件,但一定要明确它并不是类,而是另外一种引用数据类型。
引用数据类型:数组,类,接口。
接口的使用,它不能创建对象,但是可以被实现(implements
,类似于被继承)。一个实现接口的类(可以看做是接口的子类),需要实现接口中所有的抽象方法,创建该类对象,就可以调用方法了,否则它必须是一个抽象类。
###:
public interface 接口名称 {
// 常量
// 抽象方法
// 默认方法
// 静态方法
// 私有方法
}
抽象方法:使用abstract
关键字修饰,可以省略,没有方法体。该方法供子类实现使用。
代码如下:
public interface InterFaceName {
public abstract void method();
}
默认方法:使用 default
修饰,不可省略,供子类调用或者子类重写。
静态方法:使用 static
修饰,供接口直接调用。
代码如下:
public interface InterFaceName {
public default void method() {
// 执行语句
}
public static void method2() {
// 执行语句
}
}
私有方法:使用 private
修饰,供接口中的默认方法或者静态方法调用。
代码如下:
public interface InterFaceName {
private void method() {
// 执行语句
}
}
接口定义的格式
接口中可以定义常量,抽象方法,默认方法,私有方法,静态方法
public interface AInterface {
// 常量:固定不变的量,只能赋值一次
// 接口中的常量,默认会有public static final修饰,可以省略,供接口直接访问
public static final int num = 10;
int num2 = 20;
// 抽象方法:使用abstract修饰,可以省略,没有方法体,供实现类重写
public abstract void method1();
public void method2();
// 默认方法:使用default修饰,不可以省略,供实现类直接调用或者重写
public default void method3(){
System.out.println("AInterface 接口中的默认方法method3...");
}
// 静态方法:使用static修饰,不可以省略,只供接口直接调用
public static void method4(){
System.out.println("AInterface 接口中的静态方法method4...");
}
// 私有方法:使用private修饰 私有非静态方法,私有静态方法,供接口中的默认方法和静态方法调用
private void method5(){
System.out.println("AInterface 接口中的私有非静态方法method5...");
}
private static void method6(){
System.out.println("AInterface 接口中的私有静态方法method6...");
}
}
类与接口的关系为实现关系,即类实现接口,该类可以称为接口的实现类,也可以称为接口的子类。实现的动作类似继承,格式相仿,只是关键字不同,实现使用 implements
关键字。
非抽象子类实现接口:
实现格式:
class 类名 implements 接口名 {
// 重写接口中抽象方法【必须】
// 重写接口中默认方法【可选】
}
略
接口中常量的使用
public interface AInterface {
// 常量
public static final int num = 10;
}
public class AImplements implements AInterface {
public void show(){
System.out.println(num);// 访问接口中的常量num
}
}
public class Demo1Interface {
public static void main(String[] args) {
/*
使用接口:
接口中的常量只能赋值一次,默认会有public static final修饰,可以省略,供接口直接访问以及实现类中直接访问
默认方法:使用default修饰,不可以省略,供实现类直接调用或者重写
静态方法:使用static修饰,不可以省略,只供接口直接调用
私有方法:使用private修饰 私有非静态方法,私有静态方法,供接口中的默认方法和静态方法调用
*/
System.out.println(AInterface.num);
AImplements aImplements = new AImplements();
aImplements.show();
}
}
必须全部实现,代码如下:
定义接口:
public interface LiveAble {
// 定义抽象方法
public abstract void eat();
public abstract void sleep();
}
定义实现类:
public class Animal implements LiveAble {
@Override
public void eat() {
System.out.println("吃东西");
}
@Override
public void sleep() {
System.out.println("晚上睡");
}
}
定义测试类:
public class InterfaceDemo {
public static void main(String[] args) {
// 创建子类对象
Animal a = new Animal();
// 调用实现后的方法
a.eat();
a.sleep();
}
}
输出结果:
吃东西
晚上睡
可以继承,可以重写,二选一,但是只能通过实现类的对象来调用。
定义接口:
public interface LiveAble {
public default void fly(){
System.out.println("天上飞");
}
}
定义实现类:
public class Animal implements LiveAble {
// 继承,什么都不用写,直接调用
}
定义测试类:
public class InterfaceDemo {
public static void main(String[] args) {
// 创建子类对象
Animal a = new Animal();
// 调用默认方法
a.fly();
}
}
输出结果:
天上飞
定义接口:
public interface LiveAble {
public default void fly(){
System.out.println("天上飞");
}
}
定义实现类:
public class Animal implements LiveAble {
@Override
public void fly() {
System.out.println("自由自在的飞");
}
}
定义测试类:
public class InterfaceDemo {
public static void main(String[] args) {
// 创建子类对象
Animal a = new Animal();
// 调用重写方法
a.fly();
}
}
输出结果:
自由自在的飞
略
静态与.class 文件相关,只能使用接口名调用,不可以通过实现类的类名或者实现类的对象调用,代码如下:
定义接口:
public interface LiveAble {
public static void run(){
System.out.println("跑起来~~~");
}
}
定义实现类:
public class Animal implements LiveAble {
// 无法重写静态方法
}
定义测试类:
public class InterfaceDemo {
public static void main(String[] args) {
// Animal.run(); // 【错误】无法继承方法,也无法调用
LiveAble.run(); //
}
}
输出结果:
跑起来~~~
略
如果一个接口中有多个默认方法,并且方法中有重复的内容,那么可以抽取出来,封装到私有方法中,供默认方法去调用。从设计的角度讲,私有的方法是对默认方法和静态方法的辅助。同学们在已学技术的基础上,可以自行测试。
定义接口:
public interface LiveAble {
default void func(){
func1();
func2();
}
private void func1(){
System.out.println("跑起来~~~");
}
private void func2(){
System.out.println("跑起来~~~");
}
}
之前学过,在继承体系中,一个类只能继承一个父类。而对于接口而言,一个类是可以实现多个接口的,这叫做接口的多实现。并且,一个类能继承一个父类,同时实现多个接口。
实现格式:
class 类名 [extends 父类名] implements 接口名1,接口名2,接口名3... {
// 重写接口中抽象方法【必须】
// 重写接口中默认方法【不重名时可选】
}
[ ]: 表示可选操作。
接口中,有多个抽象方法时,实现类必须重写所有抽象方法**。如果抽象方法有重名的,只需要重写一次。**代码如下:
定义多个接口:
interface A {
public abstract void showA();
public abstract void show();
}
interface B {
public abstract void showB();
public abstract void show();
}
定义实现类:
public class C implements A,B{
@Override
public void showA() {
System.out.println("showA");
}
@Override
public void showB() {
System.out.println("showB");
}
@Override
public void show() {
System.out.println("show");
}
}
接口中,有多个默认方法时,实现类都可继承使用。**如果默认方法有重名的,必须重写一次。**代码如下:
定义多个接口:
interface A {
public default void methodA(){}
public default void method(){}
}
interface B {
public default void methodB(){}
public default void method(){}
}
定义实现类:
public class C implements A,B{
@Override
public void method() {
System.out.println("method");
}
}
接口中,存在同名的静态方法并不会冲突,原因是只能通过各自接口名访问静态方法。
当一个类,既继承一个父类,又实现若干个接口时,父类中的成员方法与接口中的默认方法重名,子类就近选择执行父类的成员方法。代码如下:
定义接口:
interface A {
public default void methodA(){
System.out.println("AAAAAAAAAAAA");
}
}
定义父类:
class D {
public void methodA(){
System.out.println("DDDDDDDDDDDD");
}
}
定义子类:
class C extends D implements A {
// 未重写methodA方法
}
定义测试类:
public class Test {
public static void main(String[] args) {
C c = new C();
c.methodA();
}
}
输出结果:
DDDDDDDDDDDD
/*
类和接口之间的关系: 实现关系(单实现,多实现,多层实现)
单实现: A类 只实现 A接口
多实现: A类 同时实现 A接口,B接口,C接口...
多层实现: A类 继承 B类 B类实现C接口
多实现: A类 同时实现 A接口,B接口,C接口...
格式:
public class A类 implements B,C{
}
注意情况:
1.抽象方法:
多个接口中有不同名的抽象方法:必须全部重写
多个接口中有同名的抽象方法:只需要重写一次即可
2.默认方法:
多个接口中有不同名的默认方法:可重写,可不重写
多个接口中有同名的默认方法:必须重写一次,实现类中重写的默认方法没有default关键字
3.静态方法:
接口中,存在同名或者不同名的静态方法并不会冲突,原因是只能通过各自接口名访问静态方法。
4.私有方法:
接口中,存在同名或者不同名的私有方法并不会冲突,原因是只能在本接口中的默认方法和静态方法中调用
5.优先级的问题:
实现类 可以同时继承一个类,实现多个接口,父类中的成员方法与接口中的默认方法重名,子类就近选择执行父类的成员方法
*/
一个接口能继承另一个或者多个接口,这和类之间的继承比较相似。接口的继承使用 extends
关键字,子接口继承父接口的方法。**如果父接口中的默认方法有重名的,那么子接口需要重写一次。**代码如下:
定义父接口:
interface A {
public default void method(){
System.out.println("AAAAAAAAAAAAAAAAAAA");
}
}
interface B {
public default void method(){
System.out.println("BBBBBBBBBBBBBBBBBBB");
}
}
定义子接口:
interface D extends A,B{
@Override
public default void method() {
System.out.println("DDDDDDDDDDDDDD");
}
}
小贴士:
子接口重写默认方法时,default关键字可以保留。
子类重写默认方法时,default关键字不可以保留。
其他成员特点
接口中,无法定义成员变量,但是可以定义常量,其值不可以改变,默认使用public static final修饰。
接口中,没有构造方法,不能创建对象。
接口中,没有静态代码块。
多个父接口中有重名的默认方法: 子接口必须重写父接口中重名的默认方法,需要加上default
子接口重写默认方法时,default关键字可以保留。
子类重写默认方法时,default关键字不可以保留。
接口中不能有构造方和静态代码块
接口:
接口的概述:
1.接口是引用数据类型,主要用来写抽象方法和常量,但是接口中可以写:常量,抽象方法,默认方法,私有方法,静态方法
2.接口使用interface关键字来定义
3.接口中没有构造方法,不能创建对象,需要使用类来实现接口(implements)
接口的格式:
public interface 接口名{
常量,抽象方法,默认方法,私有方法,静态方法
}
接口的实现:
public class 实现类名 implements 接口名{
需要重写接口中的抽象方法
默认方法可以选择重写
}
接口和类的关系:实现关系 单实现,多实现,多层实现
注意事项:
1.如果多个接口中有同名的抽象方法,只需要重写一次即可
2.如果多个接口中有同名的默认方法,必须重写一次,不需要加default
接口和接口关系: 继承关系 单继承,多继承,多层继承
注意事项:
1.如果多个接口中有同名的默认方法,必须重写一次,需要加default
多态是继封装、继承之后,面向对象的第三大特性。
生活中,比如跑的动作,小猫、小狗和大象,跑起来是不一样的。再比如飞的动作,昆虫、鸟类和飞机,飞起来也是不一样的。可见,同一行为,通过不同的事物,可以体现出来的不同的形态。多态,描述的就是这样的状态。
多态体现的格式:
父类类型 变量名 = new 子类对象;
变量名.方法名();
父类类型:指子类对象继承的父类类型,或者实现的父接口类型。
代码如下:
Fu f = new Zi();
f.method();
当使用多态方式调用方法时,首先检查父类中是否有该方法,如果没有,则编译错误;如果有,执行的是子类重写后方法。
代码如下:
定义父类:
public abstract class Animal {
public abstract void eat();
}
定义子类:
class Cat extends Animal {
public void eat() {
System.out.println("吃鱼");
}
}
class Dog extends Animal {
public void eat() {
System.out.println("吃骨头");
}
}
定义测试类:
public class Test {
public static void main(String[] args) {
// 多态形式,创建对象
Animal a1 = new Cat();
// 调用的是 Cat 的 eat
a1.eat();
// 多态形式,创建对象
Animal a2 = new Dog();
// 调用的是 Dog 的 eat
a2.eat();
}
}
public abstract class Animal {
int age = 10;
public abstract void eat();
public static void show(){
System.out.println("Animal类中的show方法...");
}
}
public class Dog extends Animal {
// 成员变量:
int age = 18;
@Override
public void eat() {
System.out.println("狗吃骨头...");
}
public static void show(){
System.out.println("Dog类中的show方法...");
}
}
public class Demo1 {
public static void main(String[] args) {
/*
多态的访问特点:
成员变量: 编译看左边,运行看左边
编译阶段去等于号的左边(父类\父接口),查找是否存成员变量,如果不存在,就编译报错,如果存在就编译通过
运行阶段去等于号的左边(父类\父接口),访问父类\父接口中成员变量的值
成员方法:
非静态方法:编译看左边,运行看右边
编译阶段去等于号的左边(父类\父接口),查找是否存该成员方法,如果不存在,就编译报错,如果存在就编译通过
运行阶段去等于号的右边(父类\父接口),访问子类\实现类中成员方法
静态方法:编译看左边,运行看左边
编译阶段去等于号的左边(父类\父接口),查找是否存该成员方法,如果不存在,就编译报错,如果存在就编译通过
运行阶段去等于号的左边(父类\父接口),访问父类\父接口中成员方法
*/
// 创建一个狗类对象
Animal anl1 = new Dog();
// 访问成员变量age
System.out.println(anl1.age);// 10 18
// 访问eat()方法
anl1.eat();
// 访问show方法
anl1.show();
}
}
实际开发的过程中,父类类型作为方法形式参数,传递子类对象给方法,进行方法的调用,更能体现出多态的扩展性与便利。代码如下:
定义父类:
public abstract class Animal {
public abstract void eat();
}
定义子类:
class Cat extends Animal {
public void eat() {
System.out.println("吃鱼");
}
}
class Dog extends Animal {
public void eat() {
System.out.println("吃骨头");
}
}
定义测试类:
public class Test {
public static void main(String[] args) {
// 多态形式,创建对象
Cat c = new Cat();
Dog d = new Dog();
// 调用showCatEat
showCatEat(c);
// 调用showDogEat
showDogEat(d);
/*
以上两个方法, 均可以被showAnimalEat(Animal a)方法所替代
而执行效果一致
*/
showAnimalEat(c);
showAnimalEat(d);
}
public static void showCatEat (Cat c){
c.eat();
}
public static void showDogEat (Dog d){
d.eat();
}
public static void showAnimalEat (Animal a){
a.eat();
}
}
由于多态特性的支持,showAnimalEat方法的Animal类型,是Cat和Dog的父类类型,父类类型接收子类对象,当然可以把Cat对象和Dog对象,传递给方法。
当eat方法执行时,多态规定,执行的是子类重写的方法,那么效果自然与showCatEat、showDogEat方法一致,所以showAnimalEat完全可以替代以上两方法。
不仅仅是替代,在扩展性方面,无论之后再多的子类出现,我们都不需要编写showXxxEat方法了,直接使用showAnimalEat都可以完成。
所以,多态的好处,体现在,可以使程序编写的更简单,并有良好的扩展。
多态的转型分为向上转型与向下转型两种:
当父类引用指向一个子类对象时,便是向上转型。
使用格式:
父类类型 变量名 = new 子类类型();
如:Animal a = new Cat();
一个已经向上转型的子类对象,将父类引用转为子类引用,可以使用强制类型转换的格式,便是向下转型。
使用格式:
子类类型 变量名 = (子类类型) 父类变量名;
如:Cat c =(Cat) a;
当使用多态方式调用方法时,首先检查父类中是否有该方法,如果没有,则编译错误。也就是说,不能调用子类拥有,而父类没有的方法。编译都错误,更别说运行了。这也是多态给我们带来的一点"小麻烦"。所以,想要调用子类特有的方法,必须做向下转型。
转型演示,代码如下:
定义类:
abstract class Animal {
abstract void eat();
}
class Cat extends Animal {
public void eat() {
System.out.println("吃鱼");
}
public void catchMouse() {
System.out.println("抓老鼠");
}
}
class Dog extends Animal {
public void eat() {
System.out.println("吃骨头");
}
public void watchHouse() {
System.out.println("看家");
}
}
定义测试类:
public class Test {
public static void main(String[] args) {
// 向上转型
Animal a = new Cat();
a.eat(); // 调用的是 Cat 的 eat
// 向下转型
Cat c = (Cat)a;
c.catchMouse(); // 调用的是 Cat 的 catchMouse
}
}
转型的过程中,一不小心就会遇到这样的问题,请看如下代码:
public class Test {
public static void main(String[] args) {
// 向上转型
Animal a = new Cat();
a.eat(); // 调用的是 Cat 的 eat
// 向下转型
Dog d = (Dog)a;
d.watchHouse(); // 调用的是 Dog 的 watchHouse 【运行报错】
}
}
这段代码可以通过编译,但是运行时,却报出了 ClassCastException
,类型转换异常!这是因为,明明创建了Cat类型对象,运行时,当然不能转换成Dog对象的。这两个类型并没有任何继承关系,不符合类型转换的定义。
为了避免ClassCastException的发生,Java提供了 instanceof
关键字,给引用变量做类型的校验,格式如下:
变量名 instanceof 数据类型
如果变量属于该数据类型,返回true。
如果变量不属于该数据类型,返回false。
所以,转换前,我们最好先做一个判断,代码如下:
public class Test {
public static void main(String[] args) {
// 向上转型
Animal a = new Cat();
a.eat(); // 调用的是 Cat 的 eat
// 向下转型
if (a instanceof Cat){
Cat c = (Cat)a;
c.catchMouse(); // 调用的是 Cat 的 catchMouse
} else if (a instanceof Dog){
Dog d = (Dog)a;
d.watchHouse(); // 调用的是 Dog 的 watchHouse
}
}
}
笔记本电脑(laptop)通常具备使用USB设备的功能。在生产时,笔记本都预留了可以插入USB设备的USB接口,但具体是什么USB设备,笔记本厂商并不关心,只要符合USB规格的设备都可以。
定义USB接口,具备最基本的开启功能和关闭功能。鼠标和键盘要想能在电脑上使用,那么鼠标和键盘也必须遵守USB规范,实现USB接口,否则鼠标和键盘的生产出来也无法使用。
进行描述笔记本类,实现笔记本使用USB鼠标、USB键盘
定义USB接口:
interface USB {
void open();// 开启功能
void close();// 关闭功能
}
定义鼠标类:
class Mouse implements USB {
public void open() {
System.out.println("鼠标开启,红灯闪一闪");
}
public void close() {
System.out.println("鼠标关闭,红灯熄灭");
}
public void click(){
System.out.println("鼠标单击");
}
}
定义键盘类:
class KeyBoard implements USB {
public void open() {
System.out.println("键盘开启,绿灯闪一闪");
}
public void close() {
System.out.println("键盘关闭,绿灯熄灭");
}
public void type(){
System.out.println("键盘打字");
}
}
定义笔记本类:
class Laptop {
// 笔记本开启运行功能
public void run() {
System.out.println("笔记本运行");
}
// 笔记本使用usb设备,这时当笔记本对象调用这个功能时,必须给其传递一个符合USB规则的USB设备
public void useUSB(USB usb) {
// 判断是否有USB设备
if (usb != null) {
usb.open();
// 类型转换,调用特有方法
if(usb instanceof Mouse){
Mouse m = (Mouse)usb;
m.click();
}else if (usb instanceof KeyBoard){
KeyBoard kb = (KeyBoard)usb;
kb.type();
}
usb.close();
}
}
public void shutDown() {
System.out.println("笔记本关闭");
}
}
测试类,代码如下:
public class Test {
public static void main(String[] args) {
// 创建笔记本实体对象
Laptop lt = new Laptop();
// 笔记本开启
lt.run();
// 创建鼠标实体对象
Usb u = new Mouse();
// 笔记本使用鼠标
lt.useUSB(u);
// 创建键盘实体对象
KeyBoard kb = new KeyBoard();
// 笔记本使用键盘
lt.useUSB(kb);
// 笔记本关闭
lt.shutDown();
}
}