Eight
Time Limit : 10000/5000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 16 Accepted Submission(s) : 1
Special Judge
Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
Sample Input
Sample Output
Source
South Central USA 1998 (Sepcial Judge Module By JGShining)
本来用双向bfs结果tle到死啊~~~
参考别人打表过~~~~用到康托展开
#include
#include
#include
#include
#include
#define INF 0x3f3f3f3f
#define N 400000
#define BUG printf("here!\n")
using namespace std;
struct node
{
char num[9];
int cantor;
int pos;
};
int xx[4]={0,1,0,-1};
int yy[4]={1,0,-1,0};
char temp_str[30];
char num[9];
char tmp_num[10]="123456780";
int fac[10]={1,1,2,6,24,120,720,5040,40320,362880};
int vis[N];
int route[N];
int precantor[N];
int cantor(char *num);
void bfs()
{
queue q;
memset(vis,0,sizeof(vis));
memset(precantor,-1,sizeof(precantor));
node temp;
int i;
for(i=0;i<8;i++)
temp.num[i]='1'+i;
temp.num[8]='0';
temp.pos=8;
temp.cantor=cantor(temp.num);
q.push(temp);
vis[temp.cantor]=1;
while(!q.empty())
{
node cur=q.front();
q.pop();
int cx=cur.pos/3;
int cy=cur.pos%3;
for(i=0;i<4;i++)
{
int nx=cx+xx[i];
int ny=cy+yy[i];
if(nx<0||nx>=3||ny<0||ny>=3)
continue;
node next=cur;
next.pos=nx*3+ny;
next.num[cur.pos]=next.num[next.pos];
next.num[next.pos]='0';
next.cantor=cantor(next.num);
if(vis[next.cantor])
continue;
vis[next.cantor]=1;
if(i==0)
{
route[next.cantor]='l';
precantor[next.cantor]=cur.cantor;
}
else if(i==1)
{
route[next.cantor]='u';
precantor[next.cantor]=cur.cantor;
}
else if(i==2)
{
route[next.cantor]='r';
precantor[next.cantor]=cur.cantor;
}
else
{
route[next.cantor]='d';
precantor[next.cantor]=cur.cantor;
}
q.push(next);
}
}
return ;
}
void print(int tar)
{
int i;
for(i=tar;i!=-1;i=precantor[i])
{
printf("%c",route[i]);
}
printf("\n");
}
int cantor(char *num)
{
int i,j,tol=0,sum=0;
for(i=0;i<9;i++)
{
tol=0;
for(j=i+1;j<9;j++)
{
if(num[i]='1'&&temp_str[i]<='8')
num[k++]=temp_str[i];
}
int tt=cantor(num);
if(vis[tt]==0)
printf("unsolvable\n");
else
{
print(tt);
}
}
return 0;
}