数据挖掘(matplotlib各种图的画法)

数据挖掘

matplotlib

专门用于开发2D图表(包括3D)
使用起来及其简单
以渐进、交互式方式实现数据可视化

1、折线图与基础绘图功能

# 显示中文不显示问题
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']

import matplotlib.pyplot as plt
import random

# 坐标
x = range(60)
y_lanzhou = [random.uniform(13, 18) for i in x]
y_beijing = [random.uniform(2, 5) for j in x]
# 画布
# figsize:画布大小  dpi:像素
plt.figure(figsize=(10, 8),dpi=100)
# 绘制折线图
# color 折线图的颜色  linestyle:折线图的样式    label:折线图的名称
plt.plot(x, y_lanzhou, label='兰州')
plt.plot(x, y_beijing, color='r', linestyle = '-', label='北京')

# 显示图例
plt.legend(loc='best')

# 修改刻度标签
x_ticks_label = ["11时{}分".format(i) for i in x]
y_ticks = range(40)

# 构造刻度显示
plt.xticks(x[::5], x_ticks_label[::5])
plt.yticks(y_ticks[::5])

# 显示轴名称
plt.xlabel('时间')
plt.ylabel('温度')
plt.title('温度显示状态图')
# 保存图形到本地
plt.savefig("./test.png")

plt.show()

散点图(scatter)

# 中文显示
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']

import matplotlib.pyplot as plt

# 1)准备数据
x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01,  20.67, 288.64,
       163.56, 120.06, 207.83, 342.75, 147.9 ,  53.06, 224.72,  29.51,
        21.61, 483.21, 245.25, 399.25, 343.35]
y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61,  24.9 , 239.34,
       140.32, 104.15, 176.84, 288.23, 128.79,  49.64, 191.74,  33.1 ,
        30.74, 400.02, 205.35, 330.64, 283.45]

# 2)创建画布
plt.figure(figsize=(20, 8), dpi=100)

# 3)绘制散点图
plt.scatter(x, y)

plt.savefig("./test2")

plt.xlabel('房屋面积数据')
plt.ylabel('房屋价格数据')
plt.title('房屋面积与价格关系')
# 4)显示图像
plt.show()

3柱状图(bar)

# 中文显示
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
import matplotlib.pyplot as plt

# 1)准备数据
# 电影名字
movie_name = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴','降魔传','追捕','七十七天','密战','狂兽','其它']
# 横坐标
x = range(len(movie_name))
# 票房数据
y = [73853,57767,22354,15969,14839,8725,8716,8318,7916,6764,52222]

# 2)创建画布
plt.figure(figsize=(20, 8), dpi=100)

# 3)绘制柱状图
plt.bar(x, y, width=0.5, color=['b','r','g','y','c','m','y','k','c','g','b'])

# 修改x轴的刻度显示
plt.xticks(x, movie_name)

# 添加网格显示
plt.grid(linestyle="--", alpha=0.5)

# 添加标题
plt.xlabel('电影名')
plt.ylabel('票房')
plt.title("电影票房收入对比")

# 保存图像
plt.savefig("./柱状图.png")
# 4)显示图像
plt.show()

柱状图比较相同天数的票房

# 中文显示
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
import matplotlib.pyplot as plt
# 1)准备数据
movie_name = ['雷神3:诸神黄昏','正义联盟','寻梦环游记']

first_day = [10587.6,10062.5,1275.7]    # 第一天的票房    
first_weekend=[36224.9,34479.6,11830]   # 第一周的票房

x = range(len(movie_name))

# 2)创建画布
plt.figure(figsize=(20, 8), dpi=100)

# 3)绘制柱状图
plt.bar(x, first_day, width=0.2, label="首日票房")
plt.bar([i+0.2 for i in x], first_weekend, width=0.2, label="首周票房")

# 显示图例
plt.legend()

plt.xlabel('电影名称')
plt.ylabel('票房')
plt.title('首日票房与首周票房的对比')
# 修改x轴刻度显示
plt.xticks([i+0.1 for i in x], movie_name)
plt.savefig('./柱状图对比.png')
# 4)显示图像
plt.show()

直方图(histotram)

# 中文显示
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
import matplotlib.pyplot as plt
# 1)准备数据
time = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]

# 2)创建画布
plt.figure(figsize=(20, 8), dpi=100)

# 3)绘制直方图
# 设置组距
distance = 2
# 计算组数
group_num = int((max(time) - min(time)) / distance)
# 绘制直方图
plt.hist(time, bins=group_num)

# 修改x轴刻度显示
plt.xticks(range(min(time), max(time))[::2])

# 添加网格显示
plt.grid(linestyle="--", alpha=0.5)

# 添加x, y轴描述信息
plt.xlabel("电影时长大小")
plt.ylabel("电影的数据量")
plt.title('直方图')
plt.savefig('./直方图.png')
# 4)显示图像
plt.show()

饼图(pie)

# 显示中文
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
import matplotlib.pyplot as plt
# 1)准备数据
# 电影名
movie_name = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴','降魔传','追捕','七十七天','密战','狂兽','其它']
# 场次
place_count = [60605,54546,45819,28243,13270,9945,7679,6799,6101,4621,20105]

# 2)创建画布
plt.figure(figsize=(8, 8), dpi=100)

# 3)绘制饼图
# labels 每部分名称
# autopct:占比显示指定%1.2f%%
# colors:颜色
plt.pie(place_count, labels=movie_name, autopct="%1.2f%%", colors=['b','r','g','y','c','m','y','k','c','g','y'])

# 显示图例
plt.legend()

# 添加标题
plt.title("电影排片占比")
plt.savefig('./饼状图.png')
# 4)显示图像
plt.show()

你可能感兴趣的:(python,matplotlib)