Spark Core(十八)Spark的BlockManager原理与源码分析

  1. BlockManager定义
    1. BlockManagerSpark的分布式存储系统,与我们平常说的分布式存储系统是有区别的,区别就是这个分布式存储系统只会管理Block块数据,它运行在所有节点上。BlockManager的结构是Maser-Slave架构,Master就是Driver上的BlockManagerMasterSlave就是每个Executor上的BlockManagerBlockManagerMaster负责接受Executor上的BlockManager的注册以及管理BlockManager的元数据信息
  2. BlockManager原理

    1. 从上边的定义我们已经得知,BlockManager是分布式的,运行在各个节点上的。从BlockManager的创建过程来看,其实Block是运行在Driver和每个Executor的。因为在创建SparkContext的时候,会调用SparkEnv.blockManager.initialize方法实例化BlockManager对象,在创建Executor对象的时候也会创建BlockManager
    2. 在初始化BlockManager的时候,第一步会初始化BlockTransferServiceinit方法(子类NettyBlockTransferService实现了init方法),这个方法的作用就是初始化Netty服务,为拉取block数据提供服务。第二步是调用shuffleClientinit方法,shuffleClient这个引用有可能是BlockTransferService有可能是ExternalShuffleClient,取决于我们的配置文件是否配置了externalShuffleServiceEnabled未开启状态,其实无论是哪种,都是为了对外提供服务,能够使block数据再节点之间流动起来。
    3. BlockManagerMaster调用registerBlockManager方法,向BlockManagerMaster(其实BlockManagerMasterEndpoint)发送BlockManager的注册请求。
    4. BlockManagerMaster(其实BlockManagerMasterEndpoint)接受到BlockManager的注册请求后。会调用register方法,开始注册Executor上的BlockManager,注册完成以后将BlockManagerId返回给对应Executor上的BlockManager
      Spark Core(十八)Spark的BlockManager原理与源码分析_第1张图片
  3. BlockManager源码

    1. 当我们的程序启动的时候,首先会创建SparkContext对象,在创建SparkContext对象的时候就会调用_env.blockManager.initialize(_applicationId)创建BlockManager对象,这个BlockManager就是Driver上的BlockManager,它负责管理集群中Executor上的BlockManager

    2. SparkContext里创建BlockManager代码片段

      //为Driver创建BlockManager
      _env.blockManager.initialize(_applicationId)
    3. 创建Executor的时候,Executor内部会调用_env.blockManager.initialize(conf.getAppId)方法创建BlockManager

      if (!isLocal) {
          env.metricsSystem.registerSource(executorSource)
          env.blockManager.initialize(conf.getAppId)
        }
    4. BlockManager类里的initialize方法,该方法作用是创建BlockManager,并且向BlockManagerMaster进行注册

      def initialize(appId: String): Unit = {
          //初始化BlockTransferService,其实是它的子类NettyBlockTransferService是下了init方法,
          //该方法的作用就是初始化传输服务,通过传输服务可以从不同的节点上拉取Block数据
          blockTransferService.init(this)
          shuffleClient.init(appId)
      
          //设置block的复制分片策略,由spark.storage.replication.policy指定
          blockReplicationPolicy = {
            val priorityClass = conf.get(
              "spark.storage.replication.policy", classOf[RandomBlockReplicationPolicy].getName)
            val clazz = Utils.classForName(priorityClass)
            val ret = clazz.newInstance.asInstanceOf[BlockReplicationPolicy]
            logInfo(s"Using $priorityClass for block replication policy")
            ret
          }
      
          //根据给定参数为对对应的Executor封装一个BlockManagerId对象(块存储的唯一标识)
          //executorID:executor的Id,blockTransferService.hostName:传输Block数据的服务的主机名
          //blockTransferService.port:传输Block数据的服务的主机名
          val id = BlockManagerId(executorId, blockTransferService.hostName, blockTransferService.port, None)
      
          //调用BlockManagerMaster的registerBlockManager方法向Driver上的BlockManagerMaster注册
          val idFromMaster = master.registerBlockManager(
            id,
            maxMemory,
            slaveEndpoint)
          //更新BlockManagerId
          blockManagerId = if (idFromMaster != null) idFromMaster else id
      
          //判断是否开了外部shuffle服务
          shuffleServerId = if (externalShuffleServiceEnabled) {
            logInfo(s"external shuffle service port = $externalShuffleServicePort")
            BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort)
          } else {
            blockManagerId
          }
      
          // 如果开启了外部shuffle服务,并且该节点是Driver的话就调用registerWithExternalShuffleServer方法
          //将BlockManager注册在本地
          if (externalShuffleServiceEnabled && !blockManagerId.isDriver) {
            registerWithExternalShuffleServer()
          }
      
          logInfo(s"Initialized BlockManager: $blockManagerId")
        }
    5. BlockManagerMaster类里的registerBlockManager方法,向Driver发送RegisterBlockManager消息进行注册

      def registerBlockManager(blockManagerId: BlockManagerId,maxMemSize: Long,slaveEndpoint: RpcEndpointRef): BlockManagerId = {
          logInfo(s"Registering BlockManager $blockManagerId")
          //向Driver发送注册BlockManager请求
          //blockManagerId:块存储的唯一标识,里边封装了该BlockManager所在的executorId,提供Netty服务的主机名和端口
          //maxMemSize最大的内存
          val updatedId = driverEndpoint.askWithRetry[BlockManagerId](
            RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint))
          logInfo(s"Registered BlockManager $updatedId")
          updatedId
        }
    6. BlockManagerMasterEndpoint类里的receiveAndReply方法,这个方法就是接受请求的消息,然后并处理请求

      def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
          //BlocManagerMasterEndPoint接收到来自Executor上的BlockManager注册请求的时候,
          //调用register方法开始注册BlockManager,
          case RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint) =>
            context.reply(register(blockManagerId, maxMemSize, slaveEndpoint))
          //....其余代码省略
        }
    7. BlockManagerMasterEndpoint类里的register方法,该方法的作用就是开始注册executor上的BlockManager

      
      // BlockManager到BlockManaInfo的映射
      private val blockManagerInfo = new mutable.HashMap[BlockManagerId, BlockManagerInfo]
      
      //executorId到BlockManagerId的映射
      private val blockManagerIdByExecutor = new mutable.HashMap[String, BlockManagerId]
      
          private def register(
            idWithoutTopologyInfo: BlockManagerId,
            maxMemSize: Long,
            slaveEndpoint: RpcEndpointRef): BlockManagerId = {
          //利用从Executor上传过来的BlockManagerId信息重新封装BlockManagerId,并且
          //之前传过来没有拓扑信息,这次直接将拓扑信息也封装进去,得到一个更完整的BlockManagerId
          val id = BlockManagerId(
            idWithoutTopologyInfo.executorId,
            idWithoutTopologyInfo.host,
            idWithoutTopologyInfo.port,
            topologyMapper.getTopologyForHost(idWithoutTopologyInfo.host))
      
          val time = System.currentTimeMillis()
          //判断当前这个BlockManagerId是否注册过,注册结构为:HashMap[BlockManagerId, BlockManagerInfo]
          //如果没注册过就向下执行开始注册
          if (!blockManagerInfo.contains(id)) {
            //首先会根据executorId查找内存缓存结构中是否有对应的BlockManagerId,如果为存在那么就将调用removeExecutor方法,
            //将executor从BlockManagerMaster中移除,首先会移除executorId对应的BlockManagerId,然后在移除该旧的BlockManager
            //其实就是移除以前的注册过的旧数据
            blockManagerIdByExecutor.get(id.executorId) match {
              case Some(oldId) =>
                // A block manager of the same executor already exists, so remove it (assumed dead)
                logError("Got two different block manager registrations on same executor - "
                    + s" will replace old one $oldId with new one $id")
                removeExecutor(id.executorId)
              case None =>
            }
            logInfo("Registering block manager %s with %s RAM, %s".format(
              id.hostPort, Utils.bytesToString(maxMemSize), id))
      
            //将executorId与BlockManagerId映射起来,放到内存缓存中
            blockManagerIdByExecutor(id.executorId) = id
      
            //将BlockManagerId与BlockManagerInfo映射起来,放入内存缓存中
            //BlockManagerInfo封住了BlockMangerId,当前注册的事件,最大的内存
            blockManagerInfo(id) = new BlockManagerInfo(
              id, System.currentTimeMillis(), maxMemSize, slaveEndpoint)
          }
          listenerBus.post(SparkListenerBlockManagerAdded(time, id, maxMemSize))
          id
        }
    8. BlockManagerMasterEndpoint类里的removeExecutor方法,该方法的作用就是移除掉之前注册过的旧数据

      private def removeExecutor(execId: String) {
          logInfo("Trying to remove executor " + execId + " from BlockManagerMaster.")
          //根据当前的executorId获取对应的BlockManager,这个BlockManager已经是旧数据了,然后调用removeBlockManager方法继续移除其他的旧数据
          blockManagerIdByExecutor.get(execId).foreach(removeBlockManager)
        }
    9. BlockManagerMasterEndpoint类里的removeBlockManager方法,该方法的作用就是开始移除之前注册过的并且冲突的旧数据

       private def removeBlockManager(blockManagerId: BlockManagerId) {
      
          //根据就得BlockManager找到对应的BlockManagerInfo
          val info = blockManagerInfo(blockManagerId)
      
          //将旧的BlockManager里的executorId对应的BlockManagerId移除掉
          blockManagerIdByExecutor -= blockManagerId.executorId
      
          // 然后移除掉BlockManagerId对应的BlockManagerInfo
          blockManagerInfo.remove(blockManagerId)
          val iterator = info.blocks.keySet.iterator
          while (iterator.hasNext) {
            val blockId = iterator.next
            val locations = blockLocations.get(blockId)
            locations -= blockManagerId
            if (locations.size == 0) {
              blockLocations.remove(blockId)
            }
          }
          listenerBus.post(SparkListenerBlockManagerRemoved(System.currentTimeMillis(), blockManagerId))
          logInfo(s"Removing block manager $blockManagerId")
        }

你可能感兴趣的:(spark,大数据专栏(一)Spark)