- 006设计模式--工厂方法模式(Factory Method Pattern)
少年359
设计模式设计模式工厂方法模式
目录一、什么是工厂方法模式二、工厂方法模式的结构三、工厂方法模式的代码实现四、工厂方法模式的优缺点五、工厂方法模式的应用场景六、对比七、总结一、什么是工厂方法模式简单工厂模式存在的问题:类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了开闭原则。工厂方法模式是一种常用的类创建型设计模式,此模式的核心精神是封装类中变化的部分,提取其中个性化善变的部分为独立类,通过依赖注入
- 网页性能优化之懒加载与预加载:概念、原理、实现及对比
不在··
javascript前端
1.什么是懒加载?懒加载也就是延迟加载。当访问一个页面的时候,先把img元素或是其他元素的背景图片路径替换成一张大小为1*1px图片的路径(这样就只需请求一次,俗称占位图),只有当图片出现在浏览器的可视区域内时,才设置图片正真的路径,让图片显示出来。这就是图片懒加载。2.为什么要使用懒加载?很多页面,内容很丰富,页面很长,图片较多。比如说各种商城页面。这些页面图片数量多,而且比较大,少说百来K,多
- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- ChatGPT是强人工智能吗?
呵呵爱吃菜
chatgpt人工智能
ChatGPT是强人工智能吗?本文从人工智能发展的三个阶段的角度,分析当前强大的AI大模型所处的阶段,并通过对比各阶段的定义,明确各阶段的特点和未来发展方向;NarrowAI(弱人工智能)、AGI(人工通用智能)和ASI(人工超级智能)代表了人工智能发展的三个不同阶段,它们在智能水平、任务范围和应用场景上存在显著差异。以下是它们的总结与对比:1.定义与特点类型NarrowAI(弱人工智能)AGI(
- 网络安全态势感知:企业数字化转型的 “安全密钥”
知白守黑V
安全运营网络安全态势感知网络
在数字经济飞速发展的当下,网络安全已经成为企业平稳运营的关键所在。从大型企业的数据泄露事故,到中小企业遭遇的各类网络攻击,网络安全威胁无处不在。而网络安全态势感知产品,作为应对复杂网络威胁的关键技术,正逐渐成为企业守护数字资产的“智慧大脑”。一、态势感知:全景掌控,精准防御你可以把网络安全态势感知想象成企业网络的“超级侦察兵”。它借助大数据分析、机器学习这些先进技术,就像是拥有了超级强大的“洞察力
- MySQL与Oracle对比及区别
m0_74823434
面试学习路线阿里巴巴java
一、比较1、MySQL的特点性能卓越,服务稳定,很少出现异常宕机;开放源代码无版本制约,自主性及使用成本低;历史悠久,社区和用户非常活跃,遇到问题及时寻求帮助;软件体积小,安装使用简单且易于维护,维护成本低;品牌口碑效应;支持多种OS,提供多种API接口,支持多种开发语言,对流行的PHP,Java很好的支持2、Oracle的特点兼容性:Oracle产品采用标准SQL,并经过美国u构架标准技术所(N
- mikro-orm 和typeorm 对比
大耳朵乔乔
NodeJs#SQL#NestJsnode.js数据库
以下是Mikro-ORM和TypeORM的详细对比:设计理念与架构Mikro-ORM:基于数据映射器、工作单元和身份映射模式。这种设计使得它在管理内存中实体状态方面表现优异,能够自动处理事务,当调用em.flush()时,所有计算出的更改都会被包装在一个数据库事务中。TypeORM:支持活跃记录和数据映射器模式,深受Hibernate、Doctrine和Entity框架等传统ORM的影响。它提供了
- 神经网络|(三)线性回归基础知识
西猫雷婶
神经网络线性回归机器学习
【1】引言前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:神经网络|(一)加权平均法,感知机和神经元-CSDN博客神经网络|(二)sigmoid神经元函数-CSDN博客实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+
- 牛客网面试必刷TOP101-03二叉树BM40 重建二叉树
bingw0114
面试数据结构职场和发展
描述给定节点数为n的二叉树的前序遍历和中序遍历结果,请重建出该二叉树并返回它的头结点。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出如下图所示。提示:1.vin.length==pre.length2.pre和vin均无重复元素3.vin出现的元素均出现在pre里4.只需要返回根结点,系统会自动输出整颗树做答案对比数据范围:n≤20
- pycharm新建python的快捷键_Pycharm超级好用的快捷键——效率之王
weixin_39679468
最重要的快捷键ctrl+shift+A:万能命令行shift两次:查看资源文件新建工程第一步操作module设置把空包分层去掉,compactemptymiddlepackage设置当前的工程是utf-8,设置的Editor-->FileEncodings-->全部改成utf-8,注释ctrl+/:单行注释光标操作ctrl+alt+enter:向上插入shift+enter:向下插入end:光标操
- 超级账本Hyperledger fabric 2.2.1安装测试详细步骤
wayne_keh
golanghyperledgerfabric超级账本
HyperledgerFabric2.2.1安装测试操作系统(本文Ubuntu18.04LTS虚拟机),最后在Window操作系统中再安装一个远程连接工具(如XShell或SecureCRT),方便连接并操作Ubuntu系统。1.换源,更换apt的下载源,官方下载源很慢,我们需要更换到国内的镜像站1.1进入/etc/apt目录cd/etc/apt1.2备份sources.list文件sudocp/
- 适合画地图的js库对比整理,Leaflet,Google Maps,Mapbox GL JS,OpenLayers,Cesium,D3.js等对应官方网站、Github项目地址、特点、使用场景及应用
飞火流星02027
前台地图GISjavascript地图库LeafletD3.jsMapboxGLJSGoogleMapsOpenLayers
摘要适合画地图的js库对比整理,Leaflet,GoogleMapsJavaScriptAPI,MapboxGLJS,OpenLayers,Cesium,D3.js及对应官方网站、Github项目地址、特点、使用场景地图库对比整理明细表说明维度库名Github项目特点使用场景LeafletLeaflet/Leaflet轻量级、易于使用、功能丰富。支持各种地图服务(如OpenStreetMap、Ma
- Coze,Dify,FastGPT,对比
云连山
AI编程AI编程
在当今AI技术迅速发展的背景下,AIAgent智能体成为了关键领域,Coze、Dify和FastGPT作为其中的佼佼者,各有千秋。平台介绍-FastGPT:由环界云计算公司发起,是基于大语言模型(LLM)的开源知识库问答系统。其亮点是支持Flow可视化工作流编排,在知识问答领域表现出色,拥有庞大用户群体,包括数百家企业付费客户等。网址为https://fastgpt.cn/。-Dify:苏州语灵人
- 总结:IDEA社区版接入AI代码工具
小魏的博客
机器学习大语言模型IDE相关软件intellij-ideajavaide
一、介绍本文主要记录下IDEA工具接入通义灵码、deepseek(深度求索)、豆包的方式。idea社区版(我的具体是:IntelliJIDEA2023.2.5(CommunityEdition))二、deepseek配置1、首先得去deepseek平台创建个apikey;生成key位置:DeepSeek默认会送500万的tokens,查看tokens用量:DeepSeek2、安装AutoDev插件
- 学习ESP32系列一个超级有用的网站
LS_learner
嵌入式嵌入式硬件
学习ESP32ESP32简介ESP32ArduinoIDEESP32ArduinoIDE2.0VSCode和PlatformIOESP32引脚分布ESP32输入输出ESP32PWMESP32模拟输入ESP32中断定时器ESP32深度睡眠协议ESP32Web服务器ESP32LoRaESP32BLEESP32BLE客户端-服务器ESP32蓝牙ESP32MQTTESP32ESP-NOWESP32Wi-F
- java.math 包 中的 BigInteger 类(详细案例拆解)
励志去大厂的菜鸟
Java思想和方法Java学习白话拆解Java开发语言java学习方法
前言:小编打算近期更俩三期类的专栏,一些常用的专集类,给大家分好类别总结和详细的代码举例解释。今天是第四个java.lang.Math包中的BigInteger类我们一直都是以这样的形式,让新手小白轻松理解复杂晦涩的概念,把Java代码拆解的清清楚楚,每一步都知道他是怎么来的,为什么用这串代码关键字,对比同类型的代码,让大家真正看完以后融会贯通,举一反三,实践应用!!!!①官方定义和大白话拆解对比
- NVIDIA L40s、A10、A40、A100、A6000横评,哪个GPU 更适合 AI 推理任务?
DO_Community
技术科普商业建议人工智能gpu算力DigitalOceanaiAIGC
近年来,随着人工智能技术的发展,特别是深度学习模型的广泛应用,GPU(图形处理单元)作为加速计算的重要硬件,在AI领域扮演着越来越重要的角色。AI推理是指已经训练好的模型对新数据进行预测的过程。与训练阶段相比,推理通常对GPU的要求有所不同,更注重于能效比、延迟以及并发处理能力。本文将从这些角度出发,对比分析NVIDIA的L40s、A10、A40、A100、A6000五款GPU在AI推理任务中的表
- YOLOV11改进1-检测头篇
~啥也不会~
YOLO人工智能目标检测神经网络深度学习
文章目录前言一、YAML修改二、模型训练1.数据集准备2.环境准备3.训练3.1原结构训练3.2更改后的模型三.效果对比1.原始结构2.修改后的结果3.详细对比总结前言 目标检测领域里,小目标一直是一个难点问题,虽然我们可以用YOLO+SAHI的方式进行滑动窗口推理以提升准确率,但是他的耗时会线性增强,毕竟一张大图会被切成很多小图去推理,所以在很多场景下无法得到应用。这里,我们从探测头入手,
- 全场景深度思考模型发布:囊括三大推理能力,解锁医疗循证模式
量子位
1月24日,百川智能发布了国内首个全场景深度思考模型Baichuan-M1-preview。该模型是国内目前唯一同时具备语言、视觉和搜索三大领域推理能力的模型。在数学、代码等多个权威评测中,Baichuan-M1-preview的表现均超越了o1-preview,展现了其在多领域推理方面的独特优势。此外,作为国内唯一专注医疗领域的头部大模型公司推出的深度思考模型,它还解锁了医疗循证模式,实现了从医
- 简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
周杰伦_Jay
大模型LLMs分类数据挖掘人工智能机器学习生成对抗网络transformer算法
目录前言1、大模型的定义1.1、大模型与小模型的对比2、大模型相关概念区分2.1、基础模型(FoundationModel)2.2、超大模型(Ultra-largeModel)2.3、大语言模型(LargeLanguageModel,LLM)3、大模型的发展历程3.1、萌芽期(1950-2005)3.2、探索沉淀期(2006-2019)3.3、迅猛发展期(2020-至今)4、大模型的特点5、大模型
- 国内外大模型免费访问入口汇总
SmallerFL
NLP&机器学习大模型nlp自然语言处理深度学习gpt
1.前言2024年4月18日,清华大学基础模型研究中心发布了《SuperBench大模型综合能力评测报告》,评测涉及到的国内外大模型如下:文中从多个方面进行评测,具体包含:语义评测、代码评测、对齐评测、智能体评测、安全评测等五大方面,见下图:结论:GPT-4系列模型和Claude-3**等国外模型在多个能力上依然处于领先地位**,国内头部大模型表现亮眼,与国际一流模型水平接近,且差距已经逐渐缩小。
- Nginx与API Gateway:服务路由
墨瑾轩
一起学学Nginx【一】nginxgatewayjava
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣欢迎来到Nginx与APIGateway的世界!今天我们要一起探索的是如何使用Nginx作为APIGateway来实现服务路由。想象一下,Nginx就像是一位超级向导,它能够引导每一位游客(请求)去往他们想去的景点(服务)。引言:APIGateway的魅力在微
- 自动驾驶系统研发系列—追尾风险不再隐形:解密后碰撞预警系统(RCW)的技术与应用
学步_技术
自动驾驶系统研发自动驾驶人工智能机器学习RCW
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 解析MPU与MCU的核心差异:定义、架构、功能、性能、应用及厂家全方面对比
东辰芯力
单片机risc-v嵌入式硬件人工智能单片机
MPU(MicroProcessorUnit,微处理器单元)和MCU(MicroControllerUnit,微控制器单元)是两种不同的嵌入式处理芯片类型,它们在定义、架构、功能、性能、应用以及厂家方面都有所不同。以下是对这些方面的详细分析:定义MCU:是一种高度集成的单片机,它将CPU、内存(RAM/ROM)、定时器/计数器和其他外设接口集成为一个芯片,用于执行特定控制任务。MPU:通常指的是一
- 自动驾驶系列—自动驾驶MCU架构全方位解析:从单核到多核的选型指南与应用实例
学步_技术
自动驾驶自动驾驶单片机架构MCU
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 经典卷积网络算法-VGG16
終不似少年遊*
人工智能学习进阶网络算法python人工智能神经网络图像识别
目录前言TensorFlow2.x中的tf.keras.applications使用示例主要参数迁移学习TensorFlow2.x的优势VGG16前置理解:全连接池化层具体作用与1x1池化的区别使用场景示例与1x1池化的对比总结VGG16的原始结构全局平均池化层在VGG16中的应用1.替代全连接层2.优势修改后的VGG16结构示例修改后的模型结构对比原始VGG16和修改后的模型使用场景总结前言ti
- 分布式Id方案选择
东百牧码人
Java分布式
分布式ID方案选择在当今分布式系统日益盛行的背景下,分布式ID生成方案的选择成为了众多开发者关注的焦点。一个优秀的分布式ID方案,不仅能够确保生成的ID全局唯一,避免数据冲突,还能在高并发、大规模的分布式环境中保持高性能、高可用性,同时兼顾易用性和可扩展性。以下将从多个维度对比分析几种主流的分布式ID生成方案,以期为实际业务场景中的选择提供参考。一、基于数据库的方案(一)数据库自增ID数据库自增I
- Opus编解码协议入门
弱冠少年
嵌入式软件嵌入式硬件
主要参考资料:走进音视频的世界——Opus编解码协议:https://blog.csdn.net/u011686167/article/details/126647876目录1.简介2.码率与音质、延时的关系2.1音质与码率比较2.2码率与延时对比3.Opus编解码框架4.DTX非连续传输5.FEC前向纠错1.简介Opus是一种开源免费的音频编解码器,支持音乐和语音,具有低延时、带内FEC、DTX
- 图像效果的一些专业测试工具和指标:
追心嵌入式
C语言测试工具音视频
图像效果的一些专业测试工具和指标:1,色卡:色卡是行业通用的,也是标准的,一般相机出图后会与色卡对比,来衡量是否发生了色偏,颜色还原度,失真度的差异。2,图像测试卡,一般是来测试图像中心和四角的清晰度的。测试方法,用摄像头对着图纸,使摄像头中看到图纸占满,即可测试。3,灰阶值:是反应了该相机对图像灰阶值的解析度。4,帧率,码率,分辨率H264/5i帧间隔。这些指标可以通过potplayer去看,一
- 数据结构(C++语言版)第三版pdf
Surenon
数据结构与算法c/c++java
下载地址:网盘下载内容简介《清华大学计算机系列教材:数据结构(C语言版)(第3版)》按照面向对象程序设计的思想,根据作者多年的教学积累,系统地介绍各类数据结构的功能、表示和实现,对比各类数据结构适用的应用环境;结合实际问题展示算法设计的一般性模式与方法、算法实现的主流技巧,以及算法效率的评判依据和分析方法;以高度概括的体例为线索贯穿全书,并通过对比和类比揭示数据结构与算法的内在联系,帮助读者形成整
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。