Codeforce round340 div2

Codeforces round 340 div2

A:题意:每次可以走1-5步,问你最少多少步走到x。

不说了..

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
int Ans,n;
int main() {
	scanf("%d",&n);
	Ans = n / 5 + ((n % 5 == 0) ? 0 : 1);
	cout<


B:题意:将一个0,1序列分成若干只有1的序列的方案数。

首先没有1的话答案是零(坑死)。

否则的话我们看两两1之间0的个数,设问num,那么把所有num + 1连乘起来就是答案了。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define Int long long
using namespace std;
Int n,A[1010],head,tail,Ans = 1;
bool F = false;
int main() {
	scanf("%I64d",&n);
	for(int i = 1;i <= n;i ++)
	{
		scanf("%I64d",&A[i]);
		if(A[i] == 1) F = true;
	}
	if(!F) printf("0"),exit(0);
	head = 1;
	while(head <= n)
	{
		while(head <= n && A[head] == 1) head++;
		if(head > n) break;
		tail = head;
		while(A[tail + 1] == 0 && tail < n) tail ++;
		if(head == 1 || tail == n) head = tail + 1;
		else Ans *= (tail - head + 2),head = tail + 1;
	}
	cout<


C:题意:给出平面上n个点,问以两个给定点为圆心作园,覆盖这n个点所需的两园半径的最小平方和是多少。

我们把n个点按与第一个点的距离排序,记录前缀和need[i]表示覆盖第1-i所需的最小的r1,记录后缀和have[i]表示覆盖i-n所需的最小的r2,那么min(need[i] + haveh[I + 1])就是答案。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define Int long long
using namespace std;
struct point{Int x;Int y;
};point Point[100010];
Int Ans = 1e18,n,a,b,c,d,have[100010],need[100010];
Int calc(Int A,Int B,Int C,Int D) {return (A - C) * (A - C) + (B - D) * (B - D);}
bool comp(const point &x,const point &y) {
	Int val1 = calc(a,b,x.x,x.y);
	Int val2 = calc(a,b,y.x,y.y);
	return val1 < val2;
}
int main() {
	cin>>n;
	cin>>a>>b>>c>>d;
	for(int i = 1;i <= n;i ++) cin>>Point[i].x>>Point[i].y;
	sort(Point + 1,Point + n + 1,comp);
	for(int i = 1;i <= n;i ++) need[i] = max(calc(a,b,Point[i].x,Point[i].y),need[i - 1]);
	for(int i = n;i >= 1;i --) have[i] = max(calc(c,d,Point[i].x,Point[i].y),have[i + 1]);
	for(int i = 0;i <= n;i ++) Ans = min(Ans,need[i] + have[i + 1]);
	cout<


D:题意:给出三个点,用一条折线经过这三个点,折线的所有部分必须和坐标轴平行,问折线最少由几条直线组成。

大特判..

若三点一线,答案是1.

若两点一线且三点不是构成T字型,答案是2

否则答案是3.

#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
int Ans,n;
int a,b,c,d,e,f;
int main() {
	scanf("%d%d",&a,&b);
	scanf("%d%d",&c,&d);
	scanf("%d%d",&e,&f);
	if((a == c && c == e) || (b == d && d == f)) printf("1");
	else if(a == c)
	{
		if(f >= max(b,d) || f <= min(b,d)) printf("2");
		else printf("3");
	}
	else if(a == e)
	{
		if(d >= max(b,f) || d <= min(b,f)) printf("2");
		else printf("3");
	}
	else if(c == e)
	{
		if(b >= max(f,d) || b <= min(f,d)) printf("2");
		else printf("3");
	}
	else if(b == d)
	{
		if(e >= max(a,c) || e <= min(a,c)) printf("2");
		else printf("3");
	}
	else if(b == f)
	{
		if(c >= max(a,e) || c <= min(a,e)) printf("2");
		else printf("3");
	}
	else if(d == f)
	{
		if(a >= max(e,c) || a <= min(e,c)) printf("2");
		else printf("3");
	}
	else printf("3");
	return 0;
}


E:题意:给出一个序列,每次询问l到r间A[i]^A[i+1]^..A[j] ==k的i,j的数量(i<=j,k是全局的变量,不变。)

莫队算法,首先A[i]^A[i+1]..A[j]=(A[1]^A[2]..A[i-1])^(A[1]^A[2]…A[j])(i<=j)

那么我们记录前缀和s[]。问题就变成了每次询问l到r内s[i-1]^s[j]==k的对数。

于是再记录两个桶分别表示s[i-1]和s[i]出现的次数,就可以了。(注意每次加一个点是加在前面还是后面,加在前面用s[j]桶更新,否则用s[j-1]的桶)。.

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define Int long long
using namespace std;
struct Ques {Int l;Int r;Int id;Int Ans;
};Ques q[100010];
Int n,m,A[100010],s[100010],head,tail,v,k;
Int Ans,M[3000010],N[3000010];
bool comp(const Ques &x,const Ques &y) {
	if(x.l / v != y.l / v) return x.l < y.l;
	return x.r < y.r;
}
bool back(const Ques &x,const Ques &y) {return x.id < y.id;}
int main() {
	scanf("%I64d%I64d%I64d",&n,&m,&k);
	v = (Int)sqrt(double(n));
	for(Int i = 1;i <= n;i ++) scanf("%I64d",&A[i]);
	for(Int i = 1;i <= n;i ++) s[i] = s[i - 1] ^ A[i];
	for(Int i = 1;i <= m;i ++)
	{
		scanf("%I64d%I64d",&q[i].l,&q[i].r);
		q[i].id = i;
	}
	sort(q + 1,q + m + 1,comp);
	head = 1,tail = 0;Ans = 0;
	for(Int i = 1;i <= m;i ++)
	{
		while(tail < q[i].r)
		{
			tail ++;
			N[s[tail]] ++;
			M[s[tail - 1]] ++;
			Ans += M[k ^ s[tail]];
		}
		while(tail > q[i].r)
		{
			Ans -= M[k ^ s[tail]];
			N[s[tail]] --;
			M[s[tail - 1]] --;
			tail --;
		}
		while(head < q[i].l)
		{
			Ans -= N[k ^ s[head - 1]];
			N[s[head]] --;
			M[s[head - 1]] --;
			head ++;
		}
		while(head > q[i].l)
		{
			head --;
			N[s[head]] ++;
			M[s[head - 1]] ++;
			Ans += N[k ^ s[head - 1]];
		}
		q[i].Ans = Ans;
	}
	sort(q + 1,q + m + 1,back);
	for(Int i = 1;i <= m;i ++) printf("%I64d\n",q[i].Ans);
	return 0;
}


你可能感兴趣的:(Codeforces)