Codeforces round 340 div2
A:题意:每次可以走1-5步,问你最少多少步走到x。
不说了..
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
int Ans,n;
int main() {
scanf("%d",&n);
Ans = n / 5 + ((n % 5 == 0) ? 0 : 1);
cout<
B:题意:将一个0,1序列分成若干只有1的序列的方案数。
首先没有1的话答案是零(坑死)。
否则的话我们看两两1之间0的个数,设问num,那么把所有num + 1连乘起来就是答案了。
#include
#include
#include
#include
#include
#include
#include
#include
#define Int long long
using namespace std;
Int n,A[1010],head,tail,Ans = 1;
bool F = false;
int main() {
scanf("%I64d",&n);
for(int i = 1;i <= n;i ++)
{
scanf("%I64d",&A[i]);
if(A[i] == 1) F = true;
}
if(!F) printf("0"),exit(0);
head = 1;
while(head <= n)
{
while(head <= n && A[head] == 1) head++;
if(head > n) break;
tail = head;
while(A[tail + 1] == 0 && tail < n) tail ++;
if(head == 1 || tail == n) head = tail + 1;
else Ans *= (tail - head + 2),head = tail + 1;
}
cout<
C:题意:给出平面上n个点,问以两个给定点为圆心作园,覆盖这n个点所需的两园半径的最小平方和是多少。
我们把n个点按与第一个点的距离排序,记录前缀和need[i]表示覆盖第1-i所需的最小的r1,记录后缀和have[i]表示覆盖i-n所需的最小的r2,那么min(need[i] + haveh[I + 1])就是答案。
#include
#include
#include
#include
#include
#include
#include
#include
#define Int long long
using namespace std;
struct point{Int x;Int y;
};point Point[100010];
Int Ans = 1e18,n,a,b,c,d,have[100010],need[100010];
Int calc(Int A,Int B,Int C,Int D) {return (A - C) * (A - C) + (B - D) * (B - D);}
bool comp(const point &x,const point &y) {
Int val1 = calc(a,b,x.x,x.y);
Int val2 = calc(a,b,y.x,y.y);
return val1 < val2;
}
int main() {
cin>>n;
cin>>a>>b>>c>>d;
for(int i = 1;i <= n;i ++) cin>>Point[i].x>>Point[i].y;
sort(Point + 1,Point + n + 1,comp);
for(int i = 1;i <= n;i ++) need[i] = max(calc(a,b,Point[i].x,Point[i].y),need[i - 1]);
for(int i = n;i >= 1;i --) have[i] = max(calc(c,d,Point[i].x,Point[i].y),have[i + 1]);
for(int i = 0;i <= n;i ++) Ans = min(Ans,need[i] + have[i + 1]);
cout<
D:题意:给出三个点,用一条折线经过这三个点,折线的所有部分必须和坐标轴平行,问折线最少由几条直线组成。
大特判..
若三点一线,答案是1.
若两点一线且三点不是构成T字型,答案是2
否则答案是3.
#include
#include
#include
#include
#include
#include
#include
using namespace std;
int Ans,n;
int a,b,c,d,e,f;
int main() {
scanf("%d%d",&a,&b);
scanf("%d%d",&c,&d);
scanf("%d%d",&e,&f);
if((a == c && c == e) || (b == d && d == f)) printf("1");
else if(a == c)
{
if(f >= max(b,d) || f <= min(b,d)) printf("2");
else printf("3");
}
else if(a == e)
{
if(d >= max(b,f) || d <= min(b,f)) printf("2");
else printf("3");
}
else if(c == e)
{
if(b >= max(f,d) || b <= min(f,d)) printf("2");
else printf("3");
}
else if(b == d)
{
if(e >= max(a,c) || e <= min(a,c)) printf("2");
else printf("3");
}
else if(b == f)
{
if(c >= max(a,e) || c <= min(a,e)) printf("2");
else printf("3");
}
else if(d == f)
{
if(a >= max(e,c) || a <= min(e,c)) printf("2");
else printf("3");
}
else printf("3");
return 0;
}
E:题意:给出一个序列,每次询问l到r间A[i]^A[i+1]^..A[j] ==k的i,j的数量(i<=j,k是全局的变量,不变。)
莫队算法,首先A[i]^A[i+1]..A[j]=(A[1]^A[2]..A[i-1])^(A[1]^A[2]…A[j])(i<=j)
那么我们记录前缀和s[]。问题就变成了每次询问l到r内s[i-1]^s[j]==k的对数。
于是再记录两个桶分别表示s[i-1]和s[i]出现的次数,就可以了。(注意每次加一个点是加在前面还是后面,加在前面用s[j]桶更新,否则用s[j-1]的桶)。.
#include
#include
#include
#include
#include
#include
#include
#include
#define Int long long
using namespace std;
struct Ques {Int l;Int r;Int id;Int Ans;
};Ques q[100010];
Int n,m,A[100010],s[100010],head,tail,v,k;
Int Ans,M[3000010],N[3000010];
bool comp(const Ques &x,const Ques &y) {
if(x.l / v != y.l / v) return x.l < y.l;
return x.r < y.r;
}
bool back(const Ques &x,const Ques &y) {return x.id < y.id;}
int main() {
scanf("%I64d%I64d%I64d",&n,&m,&k);
v = (Int)sqrt(double(n));
for(Int i = 1;i <= n;i ++) scanf("%I64d",&A[i]);
for(Int i = 1;i <= n;i ++) s[i] = s[i - 1] ^ A[i];
for(Int i = 1;i <= m;i ++)
{
scanf("%I64d%I64d",&q[i].l,&q[i].r);
q[i].id = i;
}
sort(q + 1,q + m + 1,comp);
head = 1,tail = 0;Ans = 0;
for(Int i = 1;i <= m;i ++)
{
while(tail < q[i].r)
{
tail ++;
N[s[tail]] ++;
M[s[tail - 1]] ++;
Ans += M[k ^ s[tail]];
}
while(tail > q[i].r)
{
Ans -= M[k ^ s[tail]];
N[s[tail]] --;
M[s[tail - 1]] --;
tail --;
}
while(head < q[i].l)
{
Ans -= N[k ^ s[head - 1]];
N[s[head]] --;
M[s[head - 1]] --;
head ++;
}
while(head > q[i].l)
{
head --;
N[s[head]] ++;
M[s[head - 1]] ++;
Ans += N[k ^ s[head - 1]];
}
q[i].Ans = Ans;
}
sort(q + 1,q + m + 1,back);
for(Int i = 1;i <= m;i ++) printf("%I64d\n",q[i].Ans);
return 0;
}