- 机器学习:入门方法与学习路径 (附资料)
weixin_34051201
人工智能javac/c++
◆◆◆1.引言也许你和这个叫『机器学习』的家伙一点也不熟,但是你举起iphone手机拍照的时候,早已习惯它帮你框出人脸;也自然而然点开今日头条推给你的新闻;也习惯逛淘宝点了找相似之后货比三家;亦或喜闻乐见微软的年龄识别网站结果刷爆朋友圈。恩,这些功能的核心算法就是机器学习领域的内容。套用一下大神们对机器学习的定义,机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的
- 介绍 TensorFlow 的基本概念和使用场景。
AC使者
githubsqlite开发语言自然语言处理
TensorFlow是一个由Google开发的开源机器学习框架,旨在让开发者能够构建和训练各种深度学习模型。以下是TensorFlow的基本概念和使用场景:张量(Tensor):在TensorFlow中,数据以张量的形式表示,可以理解为多维数组。张量是TensorFlow的基本数据单位,常用于存储训练数据和模型的参数。计算图(ComputationalGraph):TensorFlow使用计算图来
- 人工智能训练师如何做文本数据标注?
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,文本数据标注是非常重要的一个环节。文本数据标注是对数据进行结构化、分类、分词、情感分析、命名实体识别(NER)等操作,为机器学习模型提供准确的输入。以下是常见的文本数据标注任务和对应的Python代码示例。1.文本分类标注文本分类标注是对文本数据进行分类的任务。通常我们会将文本数据标注为不同的类别,比如“体育”、“娱乐”、“政治”等。示例:假设我们有一组新闻文本,我们需要为其分配
- 计算机毕业设计吊炸天Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_80213251
javajavaweb大数据课程设计python
开发技术SparkHadoopPython爬虫Vue.jsSpringBoot机器学习/深度学习人工智能创新点Spark大屏可视化爬虫预测算法功能1、登录注册界面,用户登录注册,修改信息2、管理员用户:(1)查看用户信息;(2)出行高峰期的10个时间段;(3)地铁限流的10个时间段;(4)地铁限流的前10个站点;(6)可视化大屏实时显示人流量信息。3、普通用户:(1)出行高峰期的10(5)可视化大
- 深入解析 Hydra 库:灵活强大的 Python 配置管理框架
萧鼎
python基础到进阶教程python开发语言
深入解析Hydra库:灵活强大的Python配置管理框架在机器学习、深度学习和复杂软件开发项目中,管理和维护大量的配置参数是一项具有挑战性的任务。传统的argparse、json或yaml方式虽然能管理部分配置,但随着项目规模的增长,手动管理配置文件变得越来越复杂。Hydra作为一个现代化的Python配置管理框架,提供了动态配置、层级合并、运行时修改等强大功能,使得配置管理更加灵活和高效。本文将
- 《机器学习实战》专栏 No12:项目实战—端到端的机器学习项目Kaggle糖尿病预测
带娃的IT创业者
机器学习实战机器学习人工智能分类算法python
《机器学习实战》专栏第12集:项目实战——端到端的机器学习项目Kaggle糖尿病预测本集为专栏最后一集,本专栏的特点是短平快,聚焦重点,不长篇大论纠缠于理论,而是在介绍基础理论框架基础上,快速切入实战项目和代码,所有代码都经过实践检验,是读者入门和熟悉上手的上佳知识材料在本集中,我们将通过Kaggle平台的经典糖尿病预测(PimaIndiansDiabetesDataset)数据集,系统回顾完整的
- 一文了解AI大模型相关知识点(含资料分享)
大模型研究院
人工智能机器学习自然语言处理深度学习语言模型大模型
前言,随着人工智能技术飞速发展,AI大模型在各行各业的应用日益广泛,是助力各行业提升产业智能化水平、优化业务流程等必不可少的推力,什么是AI大模型?AI大模型行业应用落地的背景?具体分为几类有哪些特点?现阶段AI大模型在落地过程中面临哪些挑战和可能的方案是什么?今天我们围绕以上几个点简单做个分享!一、AI大模型的定义和背景AI大模型指具有庞大规模和复杂计算结构的机器学习模型,这些模型通常由深度神经
- SD模型微调之LoRA
好评笔记
补档深度学习计算机视觉人工智能面试AIGCSDstablediffusion
大家好,这里是Goodnote(好评笔记),关注公主号Goodnote,专栏文章私信限时Free。本文是SD模型微调方法LoRA的详细介绍,包括数据集准备,模型微调过程,推理过程,优缺点等。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习论文概念核心原理优点训练过程预训练模型加载选择微调的层LoRA优化的层Cross-Attention(跨注意力)层Self
- Go 企业开发知识链
Wade_Crab
golang开发语言后端
Go企业级-全局篇Go企业级-全局篇,又名:Go企业级应用到底层开发(第4天)这个系列是准备做从go基础到Web开发,系统编程,云原生应用,网络编程,工具和脚本开发,机器学习,CGo编程,还有最后的编译器层级底层的分析,点上关注,方便每天阅读一键三连是我最大的动力。谢谢~~目录测试和调试Web开发跨平台Go企业中的常见组件生态Go企业流程1.测试和调试:概念:单元测试和集成测试:单元测试用于测试代
- 【Python】成功解决: OSError: [Errno 22] Invalid Argument
云天徽上
python运行报错解决记录python开发语言pandas机器学习numpy
【Python】成功解决:OSError:[Errno22]InvalidArgument博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者
- (《机器学习》完整版系列)附录 ——3、复合函数梯度的链式法则(链的次序不可交换)
人工干智能
周志华【西瓜书】辅导《机器学习》算法机器学习线性代数
推导了复合函数梯度的链式法统一形式。首创了的链式记号,非常易记:分子右挪+分数约分,特别是它强调了链的表达次序,由于矩阵积没有交换律,故该链的次序不可交换。注:修正了一般教材中的错误次序(在标量时正确)链式法则在此基础上,我们讨论复合函数的链式法则(只讨论复合后为标量函数的情况,即zzz为标量)。1.当自变量为标量xxx时,梯度为标量:∂z∂x\frac{\partialz}{\partialx}
- 利用DeepSeek提升编程效率:全面指南
一小路一
DeepSeek使用服务器后端AI编程ai
利用DeepSeek提升编程效率:全面指南目录什么是DeepSeekDeepSeek的主要功能如何有效使用DeepSeekDeepSeekvs其他AI编程助手实际应用案例注意事项和最佳实践总结1.什么是DeepSeekDeepSeek是一个基于人工智能的编程助手,旨在帮助开发者提高编码效率和质量。它利用先进的自然语言处理和机器学习技术,为程序员提供智能代码补全、代码生成、错误检测等功能。2.Dee
- 从零开始玩转TensorFlow:小明的机器学习故事 1
山海青风
#机器学习机器学习tensorflow人工智能
1.引言故事简介小明是一个计算机专业的大三学生,近期在学校里接触到了机器学习。他在某次校园活动中发现,活动主办方总是难以准确预测学生的报名人数,导致准备的物料经常不够或浪费。于是,小明萌生了一个想法:能否通过一些历史数据,用机器学习的方式来预测每场活动的参与率?在老师的建议下,他选择了TensorFlow,一个流行且强大的深度学习框架,希望能将这个想法变成现实。2.开始TensorFlow的旅程场
- 从零开始玩转TensorFlow:小明的机器学习故事 2
山海青风
#机器学习机器学习tensorflow人工智能
你好,TensorFlow!——从零开始的第一个机器学习程序1.为什么要写这个“Hello,TensorFlow!”?无论学习什么新语言或新框架,“HelloWorld!”示例都能帮助我们快速确认开发环境是否就绪,并掌握最基本的使用方式。对于初学者来说,这种“可执行的最小示例”既能降低上手门槛,又能带来满满的成就感。在这里,我们就用TensorFlow2.x的即时执行模式,输出“Hello,Ten
- 知物由学 | AI网络安全实战:生成对抗网络
Hacker_Fuchen
人工智能web安全生成对抗网络
作者:BradHarris,安全研究员,Brad曾在公共和私营部门的网络和计算机安全领域工作过。他已经完成了从渗透测试到逆向工程到应用研究的所有工作,目前他是IBMX-Force的研究员。GANs是人工智能(AI)的最新思想之一。在我们深入讨论这个话题之前,让我们先来看看“对抗性”这个词的含义。在AI的原始应用中,这个词指的是用来欺骗评估神经网络或另一个机器学习模型的样本类型。随着机器学习在安全应
- 如何系统学习 MATLAB
热爱技术。
Matlab学习matlab信息可视化
引言MATLAB(MatrixLaboratory)是一种广泛应用于工程、科学和数学领域的高效编程工具。它不仅在矩阵运算、数据分析和图形可视化等方面表现出色,还在信号处理、控制系统设计以及机器学习中占有重要地位。对于初学者和有一定编程经验的学习者来说,系统学习MATLAB可以帮助你在科研和工程项目中取得更大的进展。本文将为你提供一套系统的学习MATLAB的方法和资源,帮助你从零开始掌握这门强大的工
- 深度学习模型:原理、架构与应用
一ge科研小菜菜
工具深度学习
深度学习(DeepLearning)是机器学习中的一个分支,基于人工神经网络的发展,尤其是多层神经网络的研究,使其在语音识别、图像处理、自然语言处理等领域取得了显著进展。深度学习的核心是通过大量数据的训练,学习到数据的内在结构和模式,并且具备自动从复杂的输入中提取特征的能力。本文将从深度学习的基本原理、常见模型、训练技巧、应用领域及其面临的挑战等方面进行详细探讨,帮助理解深度学习模型如何在现代科技
- Spark MLlib中的机器学习算法及其应用场景
Java资深爱好者
深度学习推荐算法
SparkMLlib是ApacheSpark框架中的一个机器学习库,提供了丰富的机器学习算法和工具,用于处理和分析大规模数据。以下是SparkMLlib中的机器学习算法及其应用场景的详细描述:一、SparkMLlib中的机器学习算法分类算法:逻辑回归:用于二分类问题,通过最大化对数似然函数来估计模型参数。支持向量机(SVM):用于分类和回归问题,通过寻找一个超平面来最大化不同类别之间的间隔。决策树
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现文章关键词:深度学习,入侵检测,网络安全,神经网络,特征提取,系统设计文章摘要:随着互联网的快速发展和网络攻击技术的不断演进,网络安全形势日益严峻。传统的入侵检测系统(IDS)面临着检测精度低、适应性差等问题,难以有效应对日益复杂的网络攻击。深度学习作为一种强大的机器学习技术,具有强大的特征学习和模式识别能力,为入侵检测技术带来了新的机遇。本文深入探讨了基于深度
- 大一的你如何入门TensorFlow
eso1983
tensorflow人工智能python
刚刚迈入大学的你,对计算机编程还比较陌生。对于现在主流人工智能技术架构TensorFlow的学习,需要循序渐进。入门TensorFlow编程需要结合基础知识学习和实践操作。首先可能需要巩固Python基础,特别是NumPy和数据处理相关的库,因为TensorFlow很多操作和这些库有关联。接下来,可能需要了解机器学习的基本概念。TensorFlow毕竟是一个机器学习框架,如果没有基本的理解,直接上
- ARCore:ARCore的点云与深度API应用_2024-07-25_20-37-55.Tex
chenjj4003
游戏开发1024程序员节substancepainter贴图android数据库
ARCore:ARCore的点云与深度API应用ARCore简介ARCore的基本概念ARCore是Google开发的一个增强现实(AR)平台,旨在为移动设备提供高精度的AR体验。它通过使用设备的摄像头、传感器和机器学习技术,能够在没有外部标记的情况下,实现对现实世界的理解和交互。ARCore支持Android和iOS设备,允许开发者创建沉浸式的AR应用,无需额外硬件支持。ARCore的核心功能包
- 初识pytorch
m0_73286250
pytorch人工智能python
一、AI发展史二、什么是深度学习深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:三、扩展1.使用场景1)图像识别和处理2)自然语言处理(NLP)3)音频处理4)视频分析5)游戏和仿真6)自动驾驶汽车7)
- NVIDIA B200:高性能 AI 计算的未来
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能nvidiab200
简介对于一直关注人工智能和机器学习快速发展的人来说,新硬件的发布总是备受期待。每一代新处理器和加速器都有可能极大地改变我们开发和部署大规模机器学习模型的方式。NVIDIA长期处于人工智能硬件开发的最前沿,它再次凭借由Blackwell架构驱动的B200提高了标准。最近的MLPerf基准测试提供了B200的首批可靠数据,结果非常出色。在Llama270B型号上运行推理时,B200每秒可处理11,26
- Java部署机器学习模型:方案二(基于DJL)
iiilloi
机器学习springspringboot
DJL(DeepJavaLibrary)是由亚马逊公司开发的一款开源的深度学习框架,它旨在为Java开发人员提供一个简单而强大的API,使得在Java中使用深度学习变得更加容易。DJL有以下几个方面优势:支持多个底层引擎DJL支持多个底层引擎,包括MXNet、TensorFlow和PyTorch等。这使得DJL可以在多个平台上使用,包括Java、Android、iOS和RaspberryPi等。易
- 机器学习的模型类型(Model Types)
路野yue
人工智能机器学习
1.传统机器学习模型线性模型(LinearModels):线性回归(LinearRegression):用于回归任务,拟合线性关系。逻辑回归(LogisticRegression):用于分类任务,输出概率值。岭回归(RidgeRegression)和Lasso回归(LassoRegression):带正则化的线性回归。树模型(Tree-basedModels):决策树(DecisionTree):
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- 机器学习_19 集成学习知识点总结
数据媛
机器学习集成学习人工智能pythonscikit-learnnumpyscipy
集成学习(EnsembleLearning)是一种强大的机器学习范式,通过组合多个模型的预测结果来提高整体性能和泛化能力。它在分类、回归和特征选择等任务中表现出色,广泛应用于各种实际问题。今天,我们就来深入探讨集成学习的原理、实现和应用。一、集成学习的基本概念1.1集成学习的定义集成学习通过组合多个学习器(通常称为“弱学习器”)的预测结果,构建一个更强的模型(“强学习器”)。其核心思想是利用多个模
- 机器学习_18 K均值聚类知识点总结
数据媛
机器学习均值算法聚类pythonscikit-learnpandasnumpy
K均值聚类(K-meansClustering)是一种经典的无监督学习算法,广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇,使得簇内相似度高而簇间相似度低。今天,我们就来深入探讨K均值聚类的原理、实现和应用。一、K均值聚类的基本概念1.1K均值聚类的目标K均值聚类的目标是将数据集划分为K个簇,使得每个簇内的数据点尽可能接近,而不同簇之间的数据点尽可能远离。具体来说,K均值聚类最
- 机器学习—逻辑回归
60岁的程序猿
1024程序员节机器学习逻辑回归人工智能算法
本内容是博主自学机器学习总结的。由于博主水平有限,内容可能有些许错误。如有错误,请发在评论区。目录1、基础概念1.1、什么是逻辑回归1.2、逻辑回归与线性回归的区别1.3应用场景2、逻辑回归模型2.1、模型定义2.2、Sigmoid函数2.3、决策边界2.4、概率解释3、模型训练3.1、损失函数3.2、梯度下降法3.3、牛顿法3.4、拟牛顿法3.4、正则化3.5、总结4、多分类问题4.1、一对多(
- Linux升级openssl解决方案
爱编程的喵喵
Linux解决方案linuxopenssl升级openssl解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Linux升级openssl解决方案
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found