题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024
Max Sum Plus Plus
Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 22262 Accepted Submission(s): 7484
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S
1, S
2, S
3, S
4 ... S
x, ... S
n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S
x ≤ 32767). We define a function sum(i, j) = S
i + ... + S
j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i
1, j
1) + sum(i
2, j
2) + sum(i
3, j
3) + ... + sum(i
m, j
m) maximal (i
x ≤ i
y ≤ j
x or i
x ≤ j
y ≤ j
x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i
x, j
x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3 ... S
n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
Author
JGShining(极光炫影)
Recommend
We have carefully selected several similar problems for you: 1074 1025 1080 1160 1078
题目大意:输入一个m,n分别表示成m组,一共有n个数即将n个数分成m组,m组的和加起来得到最大值并输出。
解题思路:状态dp[i][j]表示前j个数分成i组的最大值。
动态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0
dp[i][j-1]+a[j]表示的是前j-1分成i组,第j个必须放在前一组里面。
max( dp[i-1][k] ) + a[j] )表示的前(0
但是题目的数据量比较到,时间复杂度为n^3,n<=1000000,显然会超时,继续优化。
max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。我们可以在每次计算dp[i][j]的时候记录下前j个
的最大值 用数组保存下来 ,这样时间复杂度为 n^2。
详见代码。
#include
#include
#include
using namespace std;
#define N 1000000
#define INF 0x7fffffff
int a[N+10];
int dp[N+10],Max[N+10];//max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。
int main()
{
int n,m,mmax;
while (~scanf("%d%d",&m,&n))
{
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(dp,0,sizeof(dp));
memset(Max,0,sizeof(Max));
for (int i=1;i<=m;i++)//分成几组
{
mmax=-INF;
for (int j=i;j<=n;j++)//j个数分成i组,至少要有i个数
{
dp[j]=max(dp[j-1]+a[j],Max[j-1]+a[j]);
Max[j-1]=mmax;
mmax=max(mmax,dp[j]);
}
}
printf ("%d\n",mmax);
}
return 0;
}