Win10,Anaconda (conda 4.7.12, python3.7.5),tensorflow安装

Win10操作系统,conda 4.7.12,python3.7.5

 

1.使用管理员权限,打开cmd,进入Anaconda路径

D:\Anaconda3\

 

2. Create a virtual environment

$  conda create -n venv pip python=3.7      #select your python wersion
$  conda activate venv     #activate the virtual enveronment
(venv)$  pip install --ignore-installed --upgrade packageURL    #install the TensorFlow pip package using its complete URL
(venv)$  conda deactivate    #exit virtualenv 

completeURL: https://www.tensorflow.org/install/pip?lang=python3#package-location 

记住选择‘CPU-only’

如果是python版本3.7,可以使用packageURL: https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-2.0.0-cp37-cp37m-win_amd64.whl

 

3.Install the TensorFlow pip package

(venv)$  pip install --upgrade tensorflow
(venv)$  python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"    #verity the install

安装的是CPU版本,在验证代码中加入以下代码,忽略警告:

import os 
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
 

 

4. 配置Anaconda,使用Jupyter

打开Anaconda,修改environment至venv:

Win10,Anaconda (conda 4.7.12, python3.7.5),tensorflow安装_第1张图片

重新install Jupyter并打开就可以使用了:

Win10,Anaconda (conda 4.7.12, python3.7.5),tensorflow安装_第2张图片

 

5.测试

TensorFlow官方代码,可以作为测试:

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

你可能感兴趣的:(Python,TensorFlow)