D:\Anaconda3\
$ conda create -n venv pip python=3.7 #select your python wersion$ conda activate venv #activate the virtual enveronment(venv)$ pip install --ignore-installed --upgrade packageURL #install the TensorFlow pip package using its complete URL(venv)$ conda deactivate #exit virtualenv
completeURL: https://www.tensorflow.org/install/pip?lang=python3#package-location
记住选择‘CPU-only’
如果是python版本3.7,可以使用packageURL: https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-2.0.0-cp37-cp37m-win_amd64.whl
(venv)$ pip install --upgrade tensorflow(venv)$ python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))" #verity the install
安装的是CPU版本,在验证代码中加入以下代码,忽略警告:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
打开Anaconda,修改environment至venv:
重新install Jupyter并打开就可以使用了:
TensorFlow官方代码,可以作为测试:
import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test)