Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2045 Accepted Submission(s): 632
Problem Description
Mr.Quin love fishes so much and Mr.Quin’s city has a nautical system,consisiting of N ports and M shipping lines. The ports are numbered 1 to N. Each line is occupied by a Weitian. Each Weitian has an identification number.
The i-th (1≤i≤M) line connects port Ai and Bi (Ai≠Bi) bidirectionally, and occupied by Ci Weitian (At most one line between two ports).
When Mr.Quin only uses lines that are occupied by the same Weitian, the cost is 1 XiangXiangJi. Whenever Mr.Quin changes to a line that is occupied by a different Weitian from the current line, Mr.Quin is charged an additional cost of 1 XiangXiangJi. In a case where Mr.Quin changed from some Weitian A's line to another Weitian's line changes to Weitian A's line again, the additional cost is incurred again.
Mr.Quin is now at port 1 and wants to travel to port N where live many fishes. Find the minimum required XiangXiangJi (If Mr.Quin can’t travel to port N, print −1instead)
Input
There might be multiple test cases, no more than 20. You need to read till the end of input.
For each test case,In the first line, two integers N (2≤N≤100000) and M (0≤M≤200000), representing the number of ports and shipping lines in the city.
In the following m lines, each contain three integers, the first and second representing two ends Ai and Bi of a shipping line (1≤Ai,Bi≤N) and the third representing the identification number Ci (1≤Ci≤1000000) of Weitian who occupies this shipping line.
Output
For each test case output the minimum required cost. If Mr.Quin can’t travel to port N, output −1 instead.
Sample Input
3 3
1 2 1
1 3 2
2 3 1
2 0
3 2
1 2 1
2 3 2
Sample Output
1
-1
2
题意:N个点M条边的无向图,每条边都有属于自己的编号,如果一条路径上的边编号都相同,那么花费仅为1;改变至不同编号的路径,花费加1,无论这个编号之前是否走过。
题解:这题看上去是跑一个最短路, 比赛时交了 dijkstra 没加优先队列TLE了很久。赛后听了下题解,发现用最简单的BFS就可以很容易的知道路径,需要比较当前路径种类和上条路径的种类,用一个dis数组去维护起点到每个点直接的最短距离;
ps:每个点可以加入到优先队列中很多次
代码:
#include
#define INF 0x3f3f3f3f
#define mem(a, x) memset(a, x, sizeof(a))
#define rep(i,a,n) for (int i=a;i p.val;
}
};
int bfs(int x) {
priority_queue q;
mem(dis, INF);
dis[x] = 0;
q.push(node(x, 0, -1));
node tmp;
while (!q.empty()) {
tmp = q.top();
q.pop();
if (tmp.val > dis[tmp.no]) continue; // 当点权值大与最短路径,舍去这条路径
if (tmp.no == n) return tmp.val; // 到是终点了
for (int i = head[tmp.no]; i; i = edges[i].next) {
// 这次的状态 与 之前的状态 进行比较
if (dis[tmp.no] + (edges[i].id!=tmp.kind) < dis[edges[i].v]) {
dis[edges[i].v] = dis[tmp.no] + (edges[i].id!=tmp.kind);
q.push(node(edges[i].v, dis[edges[i].v], edges[i].id));
}
}
}
return -1;
}
int main() {
while (~scanf("%d%d", &n, &m)) {
init();
if (m == 0) { // 无边的情况
printf("-1\n");
continue;
}
rep(i, 0, m) {
scanf("%d%d%d", &u, &v, &id);
addedge(u, v, id);
addedge(u, v, id);
}
printf("%d\n", bfs(1));
}
}