Spark Core源码精读计划10 | NettyRpcEnv客户端消息发送逻辑

推荐阅读

目录

  • 前言

  • NettyRpcEnv与消息发送相关的成员

    • clientFactory、fileDownloadFactory

    • timeoutScheduler

    • clientConnectionExecutor

    • outboxes

  • 发件箱Outbox相关逻辑

    • OutboxMessage

    • 消息处理

    • 向Outbox投递消息

  • NettyRpcEnv发送消息的方法

    • ask()方法

    • send()方法

  • 总结


前言

在上一篇文章中,我们了解了NettyRpcEnv内的调度器Dispatcher的内部细节。Dispatcher涉及到的主要是消息接收、路由与处理的机制,也就是NettyRpcEnv作为服务端应该具备的功能。既然它的名字叫“RPC环境”,那么就应该既能接收,也能发送消息。本文就主要来看一看NettyRpcEnv作为客户端向远端端点发送消息的逻辑。

NettyRpcEnv与消息发送相关的成员

这些成员有些在代码#8.5中出现过,但当时只讲了几个基础的含义,并没有细说。下面再详细列举一次。

代码#10.1 - NettyRpcEnv与消息发送相关的成员

  private def createClientBootstraps(): java.util.List[TransportClientBootstrap] = {
    if (securityManager.isAuthenticationEnabled()) {
      java.util.Arrays.asList(new AuthClientBootstrap(transportConf,
        securityManager.getSaslUser(), securityManager))
    } else {
      java.util.Collections.emptyList[TransportClientBootstrap]
    }
  }

  private val clientFactory = transportContext.createClientFactory(createClientBootstraps())

  @volatile private var fileDownloadFactory: TransportClientFactory = _

  val timeoutScheduler = ThreadUtils.newDaemonSingleThreadScheduledExecutor("netty-rpc-env-timeout")

  private[netty] val clientConnectionExecutor = ThreadUtils.newDaemonCachedThreadPool(
    "netty-rpc-connection",
    conf.getInt("spark.rpc.connect.threads", 64))

  private val outboxes = new ConcurrentHashMap[RpcAddress, Outbox]()

clientFactory、fileDownloadFactory

这两个成员的类型是TransportClientFactory,通过传输上下文TransportContext的createClientFactory()方法创建。这个工厂类在NettyRpcEnv里用于生产TransportClient,即RPC客户端。

clientFactory用来处理一般性的请求发送和应答接收,后面的分析中主要用到它。而fileDownloadFactory专门用于下载文件,所以它不会立即初始化,而是按需创建。

timeoutScheduler

它的类型是ScheduledThreadPoolExecutor,即Java中的定时线程池。它通过ThreadUtils工具类中的对应方法创建,且默认只有一条守护线程。它用来专门处理RPC请求超时。

clientConnectionExecutor

它的类型是ThreadPoolExecutor,实际上是一个缓冲的守护线程池。来看看ThreadUtils中创建它的方法,顺便复习一下线程池的七大参数吧。在读源码的过程中随时温习基础知识十分有益。

代码#10.2 - o.a.s.util.ThreadUtils.newDaemonCachedThreadPool()方法

  def newDaemonCachedThreadPool(
      prefix: String, maxThreadNumber: Int, keepAliveSeconds: Int = 60): ThreadPoolExecutor = {
    val threadFactory = namedThreadFactory(prefix)
    val threadPool = new ThreadPoolExecutor(
      maxThreadNumber,                    // corePoolSize
      maxThreadNumber,                    // maximumPoolSize
      keepAliveSeconds,                   // keepAliveTime
      TimeUnit.SECONDS,                   // timeUnit
      new LinkedBlockingQueue[Runnable],  // workQueue
      threadFactory)                      // threadFactory
                                          // rejectedExecutionHandler (default)
    threadPool.allowCoreThreadTimeOut(true)
    threadPool
  }

这个线程池专门来处理TransportClient的创建,因为TransportClientFactory.createClient()方法本身是一个阻塞调用,因此必须用线程池来异步处理它。线程池大小可以用配置项spark.rpc.connect.threads调节,默认为64。

outboxes

还记得文章#9中的“收件箱”Inbox么?这里该出现与其对应的“发件箱”Outbox了。outboxes维护有远端RPC地址与各个发件箱的映射,需要发送的消息首先会放入Outbox中,再进行处理。所有的消息都继承自OutboxMessage特征。

下面我们就以Outbox为起点探索NettyRpcEnv中消息的发送。

发件箱Outbox相关逻辑

OutboxMessage

OutboxMessage特征非常简单,只声明了两个方法:sendWith()和onFailure()。它也只有两个实现类,分别是无需应答的消息OneWayOutboxMessage和需要应答的消息RpcOutboxMessage。以RpcOutboxMessage为例,其代码如下,比较容易理解,就不多废话了。

代码#10.3 - o.a.s.rpc.netty.RpcOutboxMessage类

private[netty] case class RpcOutboxMessage(
    content: ByteBuffer,
    _onFailure: (Throwable) => Unit,
    _onSuccess: (TransportClient, ByteBuffer) => Unit)
  extends OutboxMessage with RpcResponseCallback with Logging {
  private var client: TransportClient = _
  private var requestId: Long = _

  override def sendWith(client: TransportClient): Unit = {
    this.client = client
    this.requestId = client.sendRpc(content, this)
  }

  def onTimeout(): Unit = {
    if (client != null) {
      client.removeRpcRequest(requestId)
    } else {
      logError("Ask timeout before connecting successfully")
    }
  }

  override def onFailure(e: Throwable): Unit = {
    _onFailure(e)
  }

  override def onSuccess(response: ByteBuffer): Unit = {
    _onSuccess(client, response)
  }
}

消息处理

Outbox.send()方法用于真正发送消息,其代码如下。

代码#10.4 - o.a.s.rpc.netty.Outbox.send()方法

  @GuardedBy("this")
  private val messages = new java.util.LinkedList[OutboxMessage]

  def send(message: OutboxMessage): Unit = {
    val dropped = synchronized {
      if (stopped) {
        true
      } else {
        messages.add(message)
        false
      }
    }
    if (dropped) {
      message.onFailure(new SparkException("Message is dropped because Outbox is stopped"))
    } else {
      drainOutbox()
    }
  }

其中,messages与Inbox中相同,是一个普通的链表,所以要用synchronized保证同步。如果Outbox不是停止状态的话,就将OutboxMessage添加到链表中,然后调用drainOutbox()方法处理消息。

代码#10.4 - o.a.s.rpc.netty.Outbox.drainOutbox()方法

  @GuardedBy("this")
  private var connectFuture: java.util.concurrent.Future[Unit] = null
  @GuardedBy("this")
  private var draining = false

  private def drainOutbox(): Unit = {
    var message: OutboxMessage = null
    synchronized {
      if (stopped) {
        return
      }
      if (connectFuture != null) {
        return
      }
      if (client == null) {
        launchConnectTask()
        return
      }
      if (draining) {
        return
      }
      message = messages.poll()
      if (message == null) {
        return
      }
      draining = true
    }
    while (true) {
      try {
        val _client = synchronized { client }
        if (_client != null) {
          message.sendWith(_client)
        } else {
          assert(stopped == true)
        }
      } catch {
        case NonFatal(e) =>
          handleNetworkFailure(e)
          return
      }
      synchronized {
        if (stopped) {
          return
        }
        message = messages.poll()
        if (message == null) {
          draining = false
          return
        }
      }
    }
  }

从这段代码可以看出,当Outbox遇到以下三种情况之一,则不处理消息,直接返回:

  • Outbox已经停止,或者仍然在连接远端的RPC端点;

  • TransportClient本身为空,说明还没有创建RPC客户端,此时应该先创建它;

  • 有其他线程已经在处理消息了。

如果没有异常情况的话,就从messages表中取出消息,将标志draining设为true,并调用OutboxMessage.sendWith()方法发送之。来看看创建RPC客户端的方法launchConnectTask()。

代码#10.5 - o.a.s.rpc.netty.Outbox.launchConnectTask()方法

  private def launchConnectTask(): Unit = {
    connectFuture = nettyEnv.clientConnectionExecutor.submit(new Callable[Unit] {
      override def call(): Unit = {
        try {
          val _client = nettyEnv.createClient(address)
          outbox.synchronized {
            client = _client
            if (stopped) {
              closeClient()
            }
          }
        } catch {
          case ie: InterruptedException =>
            return
          case NonFatal(e) =>
            outbox.synchronized { connectFuture = null }
            handleNetworkFailure(e)
            return
        }
        outbox.synchronized { connectFuture = null }
        drainOutbox()
      }
    })
  }

这个方法中用到了上述clientConnectionExecutor线程池来提交一个Callable,其内部会最终调用clientFactory.createClient()方法来创建RPC客户端。创建成功之后,再次调用drainOutbox()方法试图处理消息。

向Outbox投递消息

向Outbox投递消息的逻辑位于NettyRpcEnv.postToOutbox()方法中。

代码#10.6 - o.a.s.rpc.netty.NettyRpcEnv.postToOutbox()方法

  private def postToOutbox(receiver: NettyRpcEndpointRef, message: OutboxMessage): Unit = {
    if (receiver.client != null) {
      message.sendWith(receiver.client)
    } else {
      require(receiver.address != null,
        "Cannot send message to client endpoint with no listen address.")
      val targetOutbox = {
        val outbox = outboxes.get(receiver.address)
        if (outbox == null) {
          val newOutbox = new Outbox(this, receiver.address)
          val oldOutbox = outboxes.putIfAbsent(receiver.address, newOutbox)
          if (oldOutbox == null) {
            newOutbox
          } else {
            oldOutbox
          }
        } else {
          outbox
        }
      }
      if (stopped.get) {
        outboxes.remove(receiver.address)
        targetOutbox.stop()
      } else {
        targetOutbox.send(message)
      }
    }
  }

由此可见,如果已经持有了远端RPC端点引用对应的TransportClient,就直接调用OutboxMessage.sendWith()方法来发送。但如果没有持有TransportClient的话,就先从outboxes缓存中获取RPC地址对应的发件箱,如果也没有发件箱,就要创建一个出来。最后,在当前NettyRpcEnv和Outbox本身都未停止的前提下,调用send()方法发送消息。

NettyRpcEnv发送消息的方法

ask()方法

ask()方法的作用在文章#8中讲过,即“异步发送一条消息,并在规定的超时时间内等待RPC端点的回复”。其实现方法如下。

代码#10.7 - o.a.s.rpc.netty.NettyRpcEnv.ask()方法

  private[netty] def ask[T: ClassTag](message: RequestMessage, timeout: RpcTimeout): Future[T] = {
    val promise = Promise[Any]()
    val remoteAddr = message.receiver.address

    def onFailure(e: Throwable): Unit = {
      if (!promise.tryFailure(e)) {
        e match {
          case e : RpcEnvStoppedException => logDebug (s"Ignored failure: $e")
          case _ => logWarning(s"Ignored failure: $e")
        }
      }
    }

    def onSuccess(reply: Any): Unit = reply match {
      case RpcFailure(e) => onFailure(e)
      case rpcReply =>
        if (!promise.trySuccess(rpcReply)) {
          logWarning(s"Ignored message: $reply")
        }
    }

    try {
      if (remoteAddr == address) {
        val p = Promise[Any]()
        p.future.onComplete {
          case Success(response) => onSuccess(response)
          case Failure(e) => onFailure(e)
        }(ThreadUtils.sameThread)
        dispatcher.postLocalMessage(message, p)
      } else {
        val rpcMessage = RpcOutboxMessage(message.serialize(this),
          onFailure,
          (client, response) => onSuccess(deserialize[Any](client, response)))
        postToOutbox(message.receiver, rpcMessage)
        promise.future.failed.foreach {
          case _: TimeoutException => rpcMessage.onTimeout()
          case _ =>
        }(ThreadUtils.sameThread)
      }

      val timeoutCancelable = timeoutScheduler.schedule(new Runnable {
        override def run(): Unit = {
          onFailure(new TimeoutException(s"Cannot receive any reply from ${remoteAddr} " +
            s"in ${timeout.duration}"))
        }
      }, timeout.duration.toNanos, TimeUnit.NANOSECONDS)
      promise.future.onComplete { v =>
        timeoutCancelable.cancel(true)
      }(ThreadUtils.sameThread)
    } catch {
      case NonFatal(e) =>
        onFailure(e)
    }
    promise.future.mapTo[T].recover(timeout.addMessageIfTimeout)(ThreadUtils.sameThread)
  }

可见,ask()方法的执行分为两种情况:

  • 如果远端地址与当前NettyRpcEnv的地址相同,那么说明处理该消息的RPC端点就位于本地。这时就新建一个Promise对象,将其Future设置为回调方法(即onSuccess()和onFailure()方法),然后调用本地调度器的postLocalMessage()方法,将消息发送给本地RPC端点。

  • 如果远端地址与当前NettyRpcEnv的地址不同,那么说明处理该消息的RPC端点位于其他节点上。这时会将消息序列化,将它与onSuccess()、onFailure()方法逻辑一同封装到RpcOutboxMessage中投递出去。

最后,用前述timeoutScheduler设置一个定时线程,用来控制超时。超时后会抛出TimeoutException,如果没有超时,就调用cancel()方法取消计时。

send()方法

send()方法的作用则是“同步发送一条单向的消息,并且‘发送即忘记’(fire-and-forget),不需要回复”。其实现方法如下。

代码#10.7 - o.a.s.rpc.netty.NettyRpcEnv.send()方法

  private[netty] def send(message: RequestMessage): Unit = {
    val remoteAddr = message.receiver.address
    if (remoteAddr == address) {
      try {
        dispatcher.postOneWayMessage(message)
      } catch {
        case e: RpcEnvStoppedException => logDebug(e.getMessage)
      }
    } else {
      postToOutbox(message.receiver, OneWayOutboxMessage(message.serialize(this)))
    }
  }

这个方法的逻辑与ask()方法大致相同,也分为两种情况,只是细节有差别,不再赘述。

总结

本文通过研究NettyRpcEnv内与消息发送相关的逻辑,以及发件箱Outbox的消息处理逻辑,大致讲清了NettyRpcEnv作为RPC客户端的能力。

— THE END —
640?wx_fmt=png

你可能感兴趣的:(Spark Core源码精读计划10 | NettyRpcEnv客户端消息发送逻辑)