- MATLAB环境下一种音频降噪优化方法—基于时频正则化重叠群收缩
哥廷根数学学派
信号处理小波分析图像处理语音识别人工智能
语音增强是语音信号处理领域中的一个重大分支,这一分支已经得到国内外学者的广泛研究。当今时代,随着近六十年来的不断发展,己经产生了许多有效的语音增强算法。根据语音增强过程中是否利用语音和噪声的先验信息,语音增强算法一般被归类为两类,一类是无先验信息的语音增强算法,另外一类则是具有先验信息的语音增强算法。在第一类无先验信息语音增强算法中,比较常用的语音增强算法有谱减算法、基于统计模型的算法、基于信号子
- Ambiq推出语音增强人工智能以消除物联网应用中的噪声
希尔贝壳AISHELL
智能语音人工智能物联网
超低功耗半导体解决方案供应商Ambiq®推出了其最新产品——神经网络语音增强器(NNSE),并已将该方案加入到neuralSPOT的(开源模型)ModelZoo中。这一高度优化过的AI模型可以高效实时地将背景噪声从设备对话中去除,从而在嘈杂的环境中实现清晰的语音捕获。与所有AmbiqModelZoo组件一样,NNSE包含脚本和工具,可帮助开发人员向其应用程序添加语音去噪功能。它还包含一个简单的图形
- 低信噪比环境下的语音端点检测
jUicE_g2R
经验模态分解EMD语音识别语言信号处理低信噪比matlab
端点检测技术是语音信号处理的关键技术之一为提高低信噪比环境下端点检测的准确率和稳健性,提出了一种非平稳噪声抑制和调制域谱减结合功率归一化倒谱距离的端点检测算法1端点检测1-1定义定义:在存在背景噪声的情况下检测出语音的起始点和结束点(这里的重点是噪声环境下语音信号的处理)1-2应用需求应用于语音信号处理:语音增强、语音识别、编码和传输需求是:人们希望在远场或者嘈杂的环境中也能用语音控制智能设备,因
- 语音技术的未来:识别更精准、应用更丰富!
virtaitech
人工智能gpu算力语音识别
引言随着科技的飞速发展,语音技术正迅猛进步,为我们的生活带来了全新的体验。ICASPP国际会议作为语音领域的重要盛会,汇聚了众多专家学者,展示了语音处理与识别技术的最新进展。本文将结合近年ICASPP上的最新进展和各大知名语音技术公司产品探讨这些技术点,从语音识别、语音增强、语音风格迁移到语音情感识别等多个方向,展望语音技术的未来,并深入探讨GPU算力在这一领域的重要作用。1.语音识别的进步ICA
- 转载_关于AEC算法的几点思考
williamwanglei
音频
一年前我剖析过开源的AEC算法,文章链接是语音增强和语音识别;时隔这么长时间,再过来看这个算法,略有体会,以下有几点个人思考:AEC算法的主要目的是自身音源消除,对于手机或者pc这类的通话场景,这类场景和音响场景稍有差异,两者遇到的主要问题会有些差异;对于视频通话这类场景,两个通信终端的时钟偏斜和漂移是不定的,而音箱场景这个是可以在硬件上加以解决的,但是音箱场景的非线性失真却比通信场景严重的,功率
- 麦克风阵列入门
孤芳剑影
信号与系统算法
文章引注:http://t.csdnimg.cn/QP7uC一、麦克风阵列的定义所谓麦克风阵列其实就是一个声音采集的系统,该系统使用多个麦克风采集来自于不同空间方向的声音。麦克风按照指定要求排列后,加上相应的算法(排列+算法)就可以解决很多房间声学问题,比如声源定位、去混响、语音增强、盲源分离等。二、麦克风指向性麦克风的方向性是指麦克风可以接收到语音的方向。声音可以从不同的方向传达到麦克风,麦克风
- 麦克风阵列技术 三 ( 声源定位 波束形成 去混响 麦克风阵列结构设计 声学结构确认流程)
sxau_zhangtao
人机语音交互人工智能声学结构确认流程声源定位波束形成去混响麦克风阵列结构设计
麦克风阵列技术麦克风阵列技术详解声源定位延时估计角度计算波束形成波束形成模型波束形成基本理论去混响麦克风阵列结构设计声学结构确认流程紧接上一个博客文章,此为第三部分。上一部分见:麦克风阵列技术二(自动增益控制自动噪声抑制回声消除语音活动检测)麦克风阵列技术详解声源定位麦克风阵列可以自动检测声源位置,跟踪说话人,声源定位信息既可以用于智能交互,也可以用于后续的空域滤波,对目标方向进行语音增强。利用麦
- AliOS Things 声源定位应用演示
xstardust
开发框架与中间件算法函数
摘要:1.概述利用麦克风阵列进行声源定位在智能降噪、语音增强、语音识别等领域有广泛应用和研究前景。本文介绍基于AliOSThings+STM32F413HDiscovery开发板实现声源定位算法集成和功能演示。1.概述利用麦克风阵列进行声源定位在智能降噪、语音增强、语音识别等领域有广泛应用和研究前景。本文介绍基于AliOSThings+STM32F413HDiscovery开发板实现声源定位算法集
- AliOS Things声源定位应用演示
阿里云云栖号
云栖社区算法开发框架与中间件
1.概述利用麦克风阵列进行声源定位在智能降噪、语音增强、语音识别等领域有广泛应用和研究前景。本文介绍基于AliOSThings+STM32F413HDiscovery开发板实现声源定位算法集成和功能演示。声源定位算法本案例集成了STMicroelectronics的Acoustic_SL声源定位算法。Acoustic_SL是STMicroelectronics开发的声源定位算法,支持XCORR、G
- 深度学习音频降噪
mingqian_chu
#音频部分深度学习音视频人工智能
原文出自语音算法组添加链接描述这是AI降噪的第二期,上一期我们介绍了AI降噪的N种数据扩增方法,这一期我们介绍下AI降噪的一些损失函数。降噪,或者语音增强,经过近50年的研究发展,涌现出了很多优秀的降噪算法,从最简单的谱减法,到维纳滤波,再到子空间的方法以及基于统计模型的MMSE估计器,然而传统信号处理的降噪算法在imcra-omlsa出现之后发就展趋于平缓。在2014年中科大的徐博士用DNN直接
- PotPlayer降噪处理和人声增强
CJCChester
音视频
很多本地录屏视频,比如老师网课的录屏,会把电脑自己的声音也录下来,听着很烦躁,下面是我自己用potplayer播放视频时的一些处理。F5打开配置→声音→关闭规格化、晶化→关闭混响,打开降噪,门限自选→语言/同步/其他打开语音增强→均衡器→选择极端降噪(但是声音会变小很多)或者超高音,并打开superEQ均衡2022.12.11补充对极端降噪后,声音变小,有三种处理方式:PotPlayer设置里调节
- 语音增强的算法及应用
渣渣威的仿真秀
算法
语音增强的目的是从带噪语音中提取尽可能纯净的原始语音,主要目标是提高语音质量和可懂度。这一领域的发展历程相当丰富,多年来,学者们一直在努力寻求各种优良的语音增强算法。在近年的研究中,各种语音增强方法不断被提出,如基于小波变换的方法,基于人耳掩蔽效应的方法,基于听觉屏蔽的语音增强算法,基于最小均方误差MMSE-LSA语音增强算法,谱减法等,这些方法奠定了语音增强理论的基础并使之逐渐走向成熟。一、主要
- 深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署
周南音频科技教育学院(AI湖湘学派)
音频信号处理神经网络算法
加我微信hezkz17进数字音频系统研究开发交流答疑群(课题组)深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署项目一科大讯飞经验在Matlab平台上实现广义旁瓣消除器(GSC),最小方差无失真响应(MVDR)等波束形成算法,同时分析它们的效果在Liu**台上跑通语音增强试试处理框架R
- 【AI视野·今日Sound 声学论文速览 第二十六期】Mon, 16 Oct 2023
hitrjj
SoundaudioPapers人工智能智能声学计算机声学声音生成声音异常检测语言增强
AI视野·今日CS.Sound声学论文速览Mon,16Oct2023Totally7papers上期速览✈更多精彩请移步主页DailySoundPapersLow-latencySpeechEnhancementviaSpeechTokenGenerationAuthorsHuayingXue,XiulianPeng,YanLu现有的基于深度学习的语音增强主要采用数据驱动的方法,利用大量具有各种噪
- 深入剖析iLBC 解码器原理
Audio_Wang
iLBC/iSACSpeechSignalProcessingcodec
继续学习iLBCCodec...一、iLBC解码器的流程如图1是没有丢帧情况下的iLBC解码流程,当解码端收到Payload时,首先从bitstream里面解析出解码所需要的参数。这里的解码参数从LPC开始,然后是重建起始状态,接下来的subframe重建与编码时的顺序一致,通过解码三级形状/增益矢量并且相乘再叠加在一起就得到了重建的残差信号。然后进入语音增强模块,提高语音信号的周期性,最后再经过
- 本周 AI 新闻报道:多个大厂发布了重大更新
天地会珠海分舵
人工智能chatgptOpenAiAdobeFireflyGoogle
AdobeMax大会上,Adobe发布了多项使用AI的新功能。其中最重要的是全新的FireflyImage2图像生成模型,可以生成逼真的人像;Illustrator中的文本到向量图功能,允许通过文字提示生成可编辑的矢量图形;Premiere中推出一键去除填充词的语音增强等功能,这些新功能极大地提升了用户的内容创作效率。Google宣布在搜索结果中推出直接生成图像的功能,用户只需在搜索框中输入文字提
- 基于PSD-ML算法的语音增强算法matlab仿真
简简单单做算法
MATLAB算法开发#视频语音算法matlabPSD-ML语音增强
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述1.加窗处理:2.分帧处理:3.功率谱密度估计:4.滤波处理:5.逆变换处理:6.合并处理:5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022A3.部分核心程序.................................................................
- Interspeech 2023 | 火山引擎流媒体音频技术之语音增强和AI音频编码
字节跳动技术团队
火山引擎音视频人工智能
背景介绍为了应对处理各类复杂音视频通信场景,如多设备、多人、多噪音场景,流媒体通信技术渐渐成为人们生活中不可或缺的技术。为达到更好的主观体验,使用户听得清、听得真,流媒体音频技术方案融合了传统机器学习和基于AI的语音增强方案,利用深度神经网络技术方案,在语音降噪、回声消除、干扰人声消除和音频编解码等方向,为实时通信中的音频质量保驾护航。作为语音信号处理研究领域的旗舰国际会议,Interspeech
- ICASSP 2023 | 解密实时通话中基于 AI 的一些语音增强技术
字节跳动技术团队
人工智能语音识别计算机视觉深度学习
动手点关注干货不迷路背景介绍实时音视频通信RTC在成为人们生活和工作中不可或缺的基础设施后,其中所涉及的各类技术也在不断演进以应对处理复杂多场景问题,比如音频场景中,如何在多设备、多人、多噪音场景下,为用户提供听得清、听得真的体验。作为RTC方案中不可或缺的技术,语音增强技术正从传统的基于统计学习的方案向基于深度学习的方案融合演进,利用AI技术,可以在语音降噪、回声消除、干扰人声消除等方面实现更
- THUHCSI人机语音交互实验室9篇论文被语音旗舰国际会议INTERSPEECH录用
语音之家
智能语音交互
2023年ISCA国际语音通讯学会年会(2023AnnualConferenceoftheInternationalSpeechCommunicationAssociation,INTERSPEECH2023)将于2023年8月20日-24日在爱尔兰都柏林召开,清华大学人机语音交互实验室(THUHCSI)将在本次会议上发表9篇论文。这些论文涉及语音合成、语音识别、语音增强、语音分离、视频配音等多个
- AliCloudDenoise 语音增强算法,助力实时会议系统进入超清音质时代
简介:近些年,随着实时通信技术的发展,在线会议逐渐成为人们工作中不可或缺的重要办公工具,据不完全统计,线上会议中约有75%为纯语音会议,即无需开启摄像头和屏幕共享功能,此时会议中的语音质量和清晰度对线上会议的体验便至关重要。作者|七琦审校|泰一前言在现实生活中,会议所处的环境是极具多样性的,包括开阔的嘈杂环境、瞬时非平稳的键盘敲击声音等,这些对传统的基于信号处理的语音前端增强算法提出了很大的挑战。
- 我去,这是什么黑科技!用信号处理方法抑制瞬态噪声
语音之家
智能语音科技信号处理
对于语音增强来说,噪声一般可以分为稳态噪声(如白噪声)和瞬态噪声(有的地方也叫非稳态噪声,如键盘声)。如果对语音降噪有一定了解的读者会知道,一般的信号处理方法对稳态噪声比较有效,可以参考WebRTCANR流程解析,然而对于瞬态噪声,由于噪声变换较快,噪声估计算法没办法准确跟踪到噪声的变化,因此一般采用基于深度学习的方法对瞬态噪声进行抑制,可以参考DNN单通道语音增强。但是,有没有可能使用信号处理来
- K210开发实例-I2S播放音频
视觉&物联智能
物联网全栈开发实战单片机嵌入式硬件物联网K210边缘计算
I2S播放音频I2S播放音频1、I2S介绍2、I2S驱动API介绍3、I2S播放PCM数据3.1直接播放生成的Sine波形数据3.2使用DMA传输音频数据1、I2S介绍K210内置音频总线共有3个(I²S0、I²S1、I²S2),都是MASTER模式。其中I²S0支持可配置连接语音处理模块,实现语音增强和声源定向的功能。下面是一些共有的特性:总线宽度可配置为8,16,和32位每个接口最多支持4个立
- 《SEGAN: Speech Enhancement Generative Adversarial Network》论文阅读
qq_46079584
音视频其他
本文的作者是SantiagoPascual,AntonioBonafonte,JoanSerra。研究动机目前语音增强的技术都是用在频谱域上或者高维特征上,这样的话,大多数的音频处理会受到噪声环境数量的限制并且依赖一阶统计特征。为了解决这些问题,深度网络是可以从大型的数据集上学习到复杂的映射。本论文中,提出了增强GAN网络,名叫SEGAN,它是直接用时域的波形当作输入送入到网络当中去的,在看不见的
- 设计一款数字助听器可能需要用到以下音频算法
周龙(AI湖湘学派)
音视频
设计一款助听器可能需要用到以下音频算法:1响度补偿算法:助听器可能需要根据用户的听力损失情况调整不同频率范围内的增益,以提供个性化的听力补偿。这可以通过基于用户配置或自适应算法的频率响应调整来实现。2噪声抑制:用于减少环境中的噪声干扰,使用户能够更清晰地听到所需的声音。3压缩扩展:使用动态范围压缩和扩展技术,使较弱的声音更易于听到,同时限制过高音量的出现。4麦克风阵列方向性处理:语音增强算法,利用
- 【强烈推荐】 十多款2023年必备国内外王炸级AI工具 (免费 精品 好用) 让你秒变神一样的装逼佬感受10倍生产力 (2) AI修音
极客小俊
AI人工智能人工智能AI修音算法工具推荐声音处理
个人主页极客小俊✍作者简介:web开发者、设计师、技术分享博主希望大家多多支持一下,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注AI声音处理(修音)⭐AI人工智能不仅可以处理图片,声音都可以处理,真的是太强了!随着人工智能技术的不断发展,声音处理已经成为了AI领域的一个重要应用之一!那么接下来这里就推荐我经常使用的AI在线免费修音工具吧!AdobeAI语音增强(音频降噪在线处理工具
- Python语音增强
YEGE学AI算法
语音处理python开发语言
简介音频时域波形具有以下特征:音调,响度,质量。我们在进行数据增强时,最好只做一些小改动,使得增强数据和源数据存在较小差异即可,切记不能改变原有数据的结构,不然将产生“脏数据”,通过对音频数据进行数据增强,能有助于我们的模型避免过度拟合并变得更加通用。经过实验发现对声波的以下改变是有用的:Noiseaddition(增加噪音)、Addreverb(增加混响)、Timeshifting(时移)、Pi
- 智能语音信息处理团队18篇论文被语音技术顶会ICASSP 2023接收
语音之家
智能语音人工智能深度学习语音识别
近日,ICASSP2023会议发出了审稿结果通知,语音及语言信息处理国家工程研究中心智能语音信息处理团队共18篇论文被会议接收,论文方向涵盖语音识别、语音合成、话者识别、语音增强、情感识别、声音事件检测等,各接收论文简介见后文。来源丨语音及语言国家工程研究中心语音及语言信息处理国家工程实验室于2011年由国家发改委正式批准成立,由中国科学技术大学和科大讯飞股份有限公司联合共建,是我国语音产业界唯一
- WebRTC音频系统 之audio技术栈简介-1
shichaog
webrtc导读webrtc
文章目录第一章WebRTC技术栈简介1.1视频会议中常见的服务端架构1.2WebRTC网络协议栈1.3WebRTC源码目录结构1.4client侧技术栈1.5WebRTCnative编译以及debug1.6APM模块1.7ADM模块WebRTC是Google开源的Web实时音视频通信框架,其提供P2P的音频、视频和一般数据传输协议栈的支持,其音频主要包括:采集播放、众多音频编解码器、语音增强、回声
- 语音识别框架之ESPnet
语音不识别
语音识别语音识别人工智能linux
ESPnet是一个端到端的语音处理工具包,涵盖了端到端的语音识别、文本到语音、语音翻译、语音增强、说话者分类、口语理解等。ESPnet使用pytorch作为深度学习引擎,还遵循Kaldi风格的数据处理、特征提取/格式和配方,为各种语音处理实验提供完整的设置。github直通车克隆gitclonehttps://github.com/espnet/espnet官网文档安装ESPnet使用官网安装的过
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&