人脸识别(2)--Python3.6+OpenCV3.2识别实例

这里提供两个简单实例:

    • 调用摄像头获取图片进行实时检测
    • 本地获取图片进行人脸检测并保存图片

前提条件:
确保python+opencv环境已经搭建成功。搭建步骤可以参考上一篇博客:http://blog.csdn.net/u012842255/article/details/70171617

调用摄像头获取图片进行实时检测

调用摄像头,可以看到头像用方框框起来,并实时根据情况调整位置。

import cv2
import numpy as np

cv2.namedWindow(“test”)
cap=cv2.VideoCapture(0)
success, frame = cap.read()
color = (0,0,0)
classfier=cv2.CascadeClassifier(“/Users/liuqi/opencv/data/haarcascades/haarcascade_frontalface_alt.xml”)
while success:
 success, frame = cap.read()
 size=frame.shape[:2]
 image=np.zeros(size,dtype=np.float16)
 image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 cv2.equalizeHist(image, image)
 divisor=8
 h, w = size
 minSize =(w//divisor, h//divisor)
 faceRects = classfier.detectMultiScale(image, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,minSize)
 if len(faceRects)>0:
  for faceRect in faceRects:
   x, y, w, h = faceRect
   cv2.rectangle(frame, (x, y), (x+w, y+h), color)
 cv2.imshow(“test”, frame)
 key=cv2.waitKey(10)
 c = chr(key & 255)
 if c in [‘q’, ‘Q’, chr(27)]:
  break
cv2.destroyWindow(“test”)

识别结果实例:

本地获取图片进行人脸检测并保存图片

从本地路径获取图片,识别人脸后将结果图片再保存在本地。

#!/usr/bin/env python
#coding=utf-8

import os
import sys
from PIL import Image, ImageDraw
import numpy as np
import cv2
#import dlib

def detect_object(infile, save_path):
 image = cv2.imread(infile)
 ”’检测图片,获取人脸在图片中的坐标”’
 size=image.shape[:2]#获得当前桢彩色图像的大小
 #image_set=np.zeros(size,dtype=np.float16)#定义一个与当前桢图像大小相同的的灰度图像矩阵
 image_grey = np.zeros(size, np.uint8)#创建一个空白图片
 #image_grey = Image.new(mode= “RGBA”,size = size, color = (117,255,0))
 #image_grey = cv2.imread(img_grey)
 grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)#将当前桢图像转换成灰度图像
 #img_binary = cv2.threshold(image,127,255,0)#将灰度图片转化为二进制图片
 color = (135,206,250) #设置人脸框的颜色
 #eye_cascade = cv2.CascadeClassifier(‘/Users/liuqi/opencv/data/haarcascades/haarcascade_eye.xml’)
 classfier=cv2.CascadeClassifier(“/Users/liuqi/opencv/data/haarcascades/haarcascade_frontalface_alt.xml”)

 #人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
 faceRects = classfier.detectMultiScale(grey, scaleFactor = 1.3, minNeighbors = 4, minSize = (32, 32))
 result = []

 im = Image.open(infile)
 if len(faceRects) > 0: #大于0则检测到人脸
  draw = ImageDraw.Draw(im)
  num = 0
  for faceRect in faceRects:
   num += 1
   #单独框出每一张人脸
   x, y, w, h = faceRect
   #画出矩形框
   #cv2.rectangle(image_grey, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)
   cv2.rectangle(grey, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)
   a = im.crop(faceRect)
   file_name = os.path.join(save_path,str(num)+”.jpg”)
   #a.save(file_name)
 ”’保存新生成的图片”’
  #将当前帧保存为图片
  #cv2.imwrite(file_name,image_grey)
  cv2.imwrite(file_name,grey)

  drow_save_path = os.path.join(save_path,”out.jpg”)
  im.save(drow_save_path, “JPEG”, quality=80)
 else:
  print (“Error: cannot detect faces on %s” % infile)
 return 0

def process(infile):
 #获取图片,进行检测
 #image = cv2.imread(infile)
 ”’在原图上框出头像并且截取每个头像到单独文件夹”’
 #创建输出图片的路径
 #im = Image.open(infile)
 path = os.path.abspath(infile)
 save_path = os.path.splitext(path)[0]+”_face”
 try:
  os.mkdir(save_path)
 except:
  pass

 faces = detect_object(infile, save_path)

if name == “main“:
 process(“/Users/liuqi/Desktop/2.jpg”)

实现的效果如下:
选取的图片与识别后的图片:
人脸识别(2)--Python3.6+OpenCV3.2识别实例_第1张图片人脸识别(2)--Python3.6+OpenCV3.2识别实例_第2张图片
人脸识别(2)--Python3.6+OpenCV3.2识别实例_第3张图片人脸识别(2)--Python3.6+OpenCV3.2识别实例_第4张图片

你可能感兴趣的:(Python)