这是笔者最近参加的 [ 天池大赛>“数字人体”视觉挑战赛——宫颈癌风险智能诊断],项目数据处理开源教程,也希望能找到一些志同道合朋友一起组队。
注意代码中 分别代表 kfb 与 对应 json 文件
file1 = “pos_1/”+sample+".kfb"
label1 = “labels/”+sample+".json"
请根据自己文件位置定义
Python代码如下:
from Kfbreader_win10_python36 import kfbReader as kr
import cv2
import numpy as np
import json
scale = 20
sample = "T2019_9"
file1 = "pos_1/"+sample+".kfb"
label1 = "labels/"+sample+".json"
reader = kr.reader()
kr.reader.ReadInfo(reader,file1,scale,True)
def get_roi(label):
with open(label,"r") as f:
js = json.load(f)
rois = []
roi = {}
for dic in js:
if dic["class"] == "roi":
roi = dic
roi["poses"] = []
rois.append(roi)
else :
pass
for dic in js:
if dic["class"] == "roi":
pass
else:
for roi1 in rois:
if roi1["x"] <= dic["x"] and roi1["y"] <= dic["y"] and dic["x"] + dic["w"] <= roi1["x"] + roi1["w"] and dic["y"] + dic["h"] <= roi1["y"] + roi1["h"]:
roi1["poses"].append(dic)
return rois
rois = get_roi(label1)
for i,roi1 in enumerate(rois):
roi = reader.ReadRoi(roi1["x"],roi1["y"],roi1["w"],roi1["h"],scale)
for pos in roi1["poses"]:
rx = pos["x"]-roi1["x"]
ry = pos["y"]-roi1["y"]
cv2.rectangle(roi, (rx,ry), (rx+pos["w"],ry+pos["h"]),(0,255,0), 4)
save_name = "roi"+str(i)+".jpg"
cv2.imwrite(save_name,roi)
print("save roi img:"+save_name)
输出结果:
save roi img:roi0.jpg
save roi img:roi1.jpg
图中绿色就是标记处的pos位置
Ubuntu安装不像Windows那么简单(直接复制即可),笔者在这里一步步介绍下如何在Ubuntu安装:
解压 : kfbreader-linux 到项目目录下,并改文件夹名为 kfbreader_linux
打开bash 进入 kfbreader_linux目录
依次执行:
ln -s libhzzt.so libhzzt.so.1
ln -s libopencv_world.so.3.4.5 libopencv_world.so.3.4
验证是否可以在python环境下import kfbReader
python -c “import kfbReader”
如果运行失败了,那么就应该是link没有成功,解决方法如下:
vim ~/.bashrc
加入一行:export PYTHONPATH=your_kfb_path:$PYTHONPATH
加入一行:export LD_LIBRARY_PATH=your_python_lib_path:your_kfb_path:$LD_LIBRARY_PATH
source ~/.bashrc
其中,笔者还遇到了这个问题:
ImportError: libpng12.so.0: cannot open shared object file: No such file or directory
解决方法也很简单:从这个网址下载文件,https://github.com/Reginer/File/raw/master/libpng12.so.0
保存到kfbreader_linux路径下即可。
有几点需要注意的:
注意代码中 分别代表 kfb 与 对应 json 文件
file1 = “pos_1/”+sample+".kfb"
label1 = “labels/”+sample+".json"
请根据自己文件位置定义
Python代码如下:
from kfbreader_linuximport kfbReader as kr
import cv2
import numpy as np
import json
scale = 20
sample = "T2019_9"
file1 = "pos_1/"+sample+".kfb"
label1 = "labels/"+sample+".json"
reader = kr.reader()
kr.reader.ReadInfo(reader,file1,scale,True)
def get_roi(label):
with open(label,"r") as f:
js = json.load(f)
rois = []
roi = {}
for dic in js:
if dic["class"] == "roi":
roi = dic
roi["poses"] = []
rois.append(roi)
else :
pass
for dic in js:
if dic["class"] == "roi":
pass
else:
for roi1 in rois:
if roi1["x"] <= dic["x"] and roi1["y"] <= dic["y"] and dic["x"] + dic["w"] <= roi1["x"] + roi1["w"] and dic["y"] + dic["h"] <= roi1["y"] + roi1["h"]:
roi1["poses"].append(dic)
return rois
rois = get_roi(label1)
for i,roi1 in enumerate(rois):
roi = reader.ReadRoi(roi1["x"],roi1["y"],roi1["w"],roi1["h"],scale)
for pos in roi1["poses"]:
rx = pos["x"]-roi1["x"]
ry = pos["y"]-roi1["y"]
cv2.rectangle(roi, (rx,ry), (rx+pos["w"],ry+pos["h"]),(0,255,0), 4)
save_name = "roi"+str(i)+".jpg"
cv2.imwrite(save_name,roi)
print("save roi img:"+save_name)
输出结果:
save roi img:roi0.jpg
save roi img:roi1.jpg
码字不易,觉得有用的话,麻烦动动手指赏个赞。下一篇我会开源如何将比赛数据转化为coco数据集的形式,大家就可以开始训练啦。
有什么问题的话欢迎访问点击笔者知识星球与我联系:[ AI深度学习应用之路]
告诉大家一个小秘密:我将在星球开源整套项目baseline