生产者与消费模式

前言

最近在看并发编程艺术这本书,对看书的一些笔记及个人工作中的总结。

什么是生产者和消费者模式?

在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序整体处理数据的速度。
在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,
那么消费者就必须等待生产者。为了解决这种生产消费能力不均衡的问题,便有了生产者和消费者模式。

生产者和消费者模式是通过一个容器(一般使用阻塞队列)来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通信,而是通过阻塞队列来进行通信,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

直接看demo:
生产者:

public class Provider implements Runnable{

    //共享缓存区
    private BlockingQueue queue;
    //多线程间是否启动变量,有强制从主内存中刷新的功能。即时返回线程的状态
    private volatile boolean isRunning = true;
    //id生成器
    private static AtomicInteger count = new AtomicInteger();
    //随机对象
    private static Random r = new Random();

    public Provider(BlockingQueue queue){
        this.queue = queue;
    }

    @Override
    public void run() {
        while(isRunning){
            try {
                //随机休眠0 - 1000 毫秒 表示获取数据(产生数据的耗时)
                Thread.sleep(r.nextInt(1000));
                //获取的数据进行累计...
                int id = count.incrementAndGet();
                //比如通过一个getData方法获取了
                Data data = new Data(Integer.toString(id), "数据" + id);
                System.out.println("当前线程:" + Thread.currentThread().getName() + ", 获取了数据,id为:" + id + ", 将数据加入到阻塞队列...");
                //将生产者生产的数据加入阻塞队列中,如果2s加入没有成功就失败
                if(!this.queue.offer(data, 2, TimeUnit.SECONDS)){
                    System.out.println("提交缓冲区数据失败....");
                    //do something... 比如重新提交
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    public void stop(){
        this.isRunning = false;
    }

}

消费端:

public class Consumer implements Runnable{

    private BlockingQueue queue;

    public Consumer(BlockingQueue queue){
        this.queue = queue;
    }

    //随机对象
    private static Random r = new Random();

    @Override
    public void run() {
        while(true){
            try {
                //获取数据
                Data data = this.queue.take();
                //进行数据处理。休眠0 - 1000毫秒模拟耗时
                Thread.sleep(r.nextInt(1000));
                System.out.println("当前消费线程:" + Thread.currentThread().getName() + ", 消费成功,消费数据为id: " + data.getId());
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}
public final class Data {

    private String id;
    private String name;

    public Data(String id, String name){
        this.id = id;
        this.name = name;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    @Override
    public String toString(){
        return "{id: " + id + ", name: " + name + "}";
    }

}

测试类:

public class Test {

    public static void main(String[] args) throws Exception {
        //内存缓冲区
        BlockingQueue queue = new LinkedBlockingQueue<>(10);
        //生产者
        Provider p1 = new Provider(queue);

        Provider p2 = new Provider(queue);
        Provider p3 = new Provider(queue);
        //消费者
        Consumer c1 = new Consumer(queue);
        Consumer c2 = new Consumer(queue);
        Consumer c3 = new Consumer(queue);
        //创建线程池运行,这是一个缓存的线程池,可以创建无穷大的线程,没有任务的时候不创建线程。空闲线程存活时间为60s(默认值)

        ExecutorService cachePool = Executors.newCachedThreadPool();
        cachePool.execute(p1);
        cachePool.execute(p2);
        cachePool.execute(p3);
        cachePool.execute(c1);
        cachePool.execute(c2);
        cachePool.execute(c3);

        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        //3s之后停止生产数据,消费者也就无法再继续取到数据
        p1.stop();
        p2.stop();
        p3.stop();
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

//      cachePool.shutdown();
//      cachePool.shutdownNow();


    }
}

线程池与生产消费者模式

之前的博客已经提到过线程池的底层都使用了阻塞队列(BlockingQueue)
Java中的线程池类其实就是一种生产者和消费者模式的实现方式,但是我觉得其实现方式更加高明。生产者把任务丢给线程池,线程池创建线程并处理任务,如果将要运行的任务数大于线程池的基本线程数就把任务扔到阻塞队列里,这种做法比只使用一个阻塞队列来实现生产者和消费者模式显然要高明很多,因为消费者能够处理直接就处理掉了,这样速度更快,而生产者先存,消费者再取这种方式显然慢一些。
比如:

public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue());
}

比如:

public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue()));
}

我相信这种场景应该非常多,特别是需要处理任务时间比较长的场景,比如上传附件并处理,用户把文件上传到系统后,系统把文件丢到队列里,然后立刻返回告诉用户上传成功,最后消费者再去队列里取出文件处理。再如,调用一个远程接口查询数据,如果远程服务接口查询时需要几十秒的时间,那么它可以提供一个申请查询的接口,这个接口把要申请查询任务放数据库中,然后该接口立刻返回。然后服务器端用线程轮询并获取申请任务进行处理,处理完之后发消息给调用方,让调用方再来调用另外一个接口取数据。

你可能感兴趣的:(生产者与消费模式)