- c#分页_《Dotnet9》系列-开源C# WPF控件库3《HandyControl》强力推荐
weixin_39654058
c#分页c#给按钮添加链接wpfmysql
大家好,我是Dotnet9小编,一个从事dotnet开发8年+的程序员。我最近开始写dotnet分享文章,希望能让更多人看到dotnet的发展,了解更多dotnet技术,帮助dotnet程序员应用dotnet技术更好的运用于工作和学习中去。历经3个白天2个黑夜(至凌晨2点),Dotnet9小编经过反复修改、润色,终于完成此文编写(本文略长,手机党请考虑流量),只能说小编我不容易呀不容易。完成此文编
- 指令系统与汇编语言
荔枝寄
mongodb数据库
单片机的学习通常从基础硬件知识开始,逐步深入到指令系统、编程技巧等高级内容。这种学习路径反映了掌握复杂技术时的自然演进:先理解构建块,再了解如何将这些块组合起来创建功能更强大的系统。本文将探讨单片机学习中的关键概念,并通过代码示例加深理解。基础硬件知识单片机(MicrocontrollerUnit,MCU)是一种集成了处理器、内存和输入/输出接口的小型计算机。它可以在嵌入式设备中找到,用于控制特定
- 深度学习中交叉熵函数的导数:(极简)
洪小帅
深度学习人工智能神经网络python
文章目录前言一.交叉熵函数的导数二.Z,y为有n条数据的矩阵前言另一个博主有更详细的推导https://blog.csdn.net/chaipp0607/article/details/101946040一.交叉熵函数的导数softmax:令一条数据最后的输出为[z1,z2,z3,z4,…,z10],这里令输出层的神经元数量为10pi=ezi∑j=110ezjpi=\frac{e^{z_i}}{\
- 深度学习中的通道(Channel)概念详解
小·恐·龙
大模型深度学习人工智能
1.通道的基本概念通道(Channel)是深度学习中的一个重要概念,它在不同场景下有不同的具体含义。理解通道概念对于理解深度学习模型的结构和工作原理至关重要。2.大语言模型中的通道2.1全连接层的通道概念2.1.1基本结构输入:[batch_size,input_features]权重:[input_features,output_features]输出:[batch_size,output_fe
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 2024年12月蓝桥杯Scratch12月stema选拔赛真题试卷
嗨信奥
scratch青少年编程蓝桥杯
完整的题目及在线模拟考试可点击下方链接前往:2024年蓝桥杯Scratch12月stema选拔赛真题_scratch_少儿编程题库学习中心-嗨信奥https://www.hixinao.com/tidan/scratch/show-267.html
- MySQL-事务隔离级别与MVCC
事务快照视图mysqlmvcc
大家好,我是半夏之沫一名金融科技领域的JAVA系统研发我希望将自己工作和学习中的经验以最朴实,最严谨的方式分享给大家,共同进步写作不易,期待大家的关注和点赞关注微信公众号【技术探界】前言本篇文章首先会对数据库事务的几个基础概念进行说明,主要是事务ACID模型,并发事务带来的问题和事务隔离级别。然后在此基础上,会对MySQL的InnoDB引擎中的一致性非锁定读取(ConsistentNonlocki
- AI时代的PPT革命:智能生成PPT工具为何备受青睐?
HUIPPT剑盾ai
人工智能aigc
在日常工作和学习中,PPT是我们不可或缺的表达工具。制作一份精美的PPT常常需要耗费数小时,甚至几天的时间。从选择主题到调整排版,琐碎的细节让人筋疲力尽。但现在一种名为“AI生成PPT”的技术正悄然崛起,彻底颠覆了传统PPT制作的方式。智能生成PPT:效率与创意的双赢传统PPT的制作流程,既考验技术,又考验审美。如果你不是设计师,很可能被花哨的模板和配色难倒。随着智能技术的不断突破,诸如huipp
- 数据库风险
weixin_34195364
数据库
大家好,下面是我在学习中获取的一些小知识,在这里和大家进行一个分享,希望可以帮助到大家,如果有不懂的,请参考:网络课程数据库中存在很多风险,以下给大家介绍一部分的的风险存在:一、内部人员错误数据库安全的一个潜在风险就是“非故意的授权用户***”和内部人员错误。这种安全事件类型的最常见表现包括:由于不慎而造成意外删除或泄漏,非故意的规避安全策略。在授权用户无意访问敏感数据并错误地修改或删除信息时,就
- 深度学习中超参数
fengbingchun
DeepLearninghyperparameter
深度学习中的超参数(hyperparameters)是决定网络结构的变量(例如隐藏层数量)和决定网络训练方式的变量(例如学习率)。超参数的选择会显著影响训练模型所需的时间,也会影响模型的性能。超参数是在训练开始之前设置的,而不是从数据中学习的参数。超参数是模型训练期间无法学习的参数,需要事先设置。在深度学习中,模型由模型参数(如神经网络的权重和偏置)定义或表示。然而,训练模型的过程涉及选择最佳超参
- 直装永久授权,最新专业版集成VB7
纪元A梦
资源分享科技电脑软件Windows软件office软件
无论是学生、教师还是职场工作人员,办公软件在日常工作和学习中都是不可或缺的重要工具。在众多办公软件中,微软的MicrosoftOffice和金山软件的WPSOffice最常用的选择。对于许多使用要求不高的小伙伴而言,WPSOffice因其易用性和免费版本的优势,成为了他们的首选。此外,WPS的专业版相较于免费版没有广告,提供了更强大的功能,满足了更多用户的需求。这使得WPSOffice在办公软件市
- 2024年全国信息素养大赛图形化挑战赛国赛(决赛)真题——绘制20个多边形
嗨信奥
scratch青少年编程
绘制20个多边形编程任务从三角形开始,递增边数,一次画出20个多边形。参数说明:1.画笔初始位置(-25,180),粗细为2;2.每个多边形的边长都是50;3.每画一个多边形,画笔要改变颜色。完整题目可点击下方链接:绘制20个多边形_scratch_少儿编程题库学习中心-嗨信奥https://www.hixinao.com/tiku/scratch/show-3937.html程序演示及获取源码可
- PyTorch 基础数据集:从理论到实践的深度学习基石
那年一路北
Pytorch理论+实践深度学习pytorch人工智能
一、引言深度学习作为当今人工智能领域的核心技术,在图像识别、自然语言处理、语音识别等众多领域取得了令人瞩目的成果。而在深度学习的体系中,数据扮演着举足轻重的角色,它是模型训练的基础,如同建筑的基石,决定了模型的性能和泛化能力。PyTorch作为当下最流行的深度学习框架之一,为开发者提供了丰富且强大的工具来处理数据集。本文将深入探讨PyTorch中的基础数据集,从深度学习中数据的重要性出发,详细介绍
- Mybatis源码-加载映射文件与动态代理
大家好,我是半夏之沫一名金融科技领域的JAVA系统研发我希望将自己工作和学习中的经验以最朴实,最严谨的方式分享给大家,共同进步写作不易,期待大家的关注和点赞关注微信公众号【技术探界】前言本篇文章将分析Mybatis在配置文件加载的过程中,如何解析映射文件中的SQL语句以及每条SQL语句如何与映射接口的方法进行关联。在看该部分源码之前,需要具备JDK动态代理的相关知识,如果该部分不是很了解,可以先看
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- mindspore编译报错
小乐快乐
深度学习神经网络
1、重新创建个工程后无法正常运行,2、使用代码为:华为提供的机器学习监督学习中的代码[quote][size=2][url=forum.php?mod=redirect&goto=findpost&pid=1364937&ptid=165780][color=#999999]回复:HS12发表于2021-10-3018:16[/color][/url][/size]报错信息
- 线性回归:从基础到进阶的全面解析
tester Jeffky
大模型线性回归机器学习算法
线性回归:从基础到进阶的全面解析线性回归是机器学习中最基本的算法之一,广泛应用于预测和分析。本文将详细介绍线性回归的基本概念、数学原理、实现方法以及在实际应用中的注意事项。我们将通过丰富的代码示例来展示如何从头开始构建一个简单的线性回归模型,并逐步深入到更复杂的场景。1.线性回归的基本概念1.1什么是线性回归?线性回归是一种用于建模两个或多个变量之间关系的统计方法。它假设因变量(目标变量)与一个或
- Python实用小工具(3)——实现PDF合并和拆分功能(附源码+exe文件)
MatpyMaster
实用小工具pdf测试工具
在日常工作和学习中,我们常常会遇到需要处理PDF文件的情况,例如合并多个PDF文档,拆分成单页或指定页数的PDF等。为了更方便地处理这些任务,今天我们将利用Python和Tkinter库,创建一个简易的PDF工具。这个工具包括PDF合并和PDF拆分两个功能,操作简单,界面友好。功能介绍①PDF合并工具新增一个PDF:点击该按钮可进行PDF的选择,需要注意的是依次选择的顺序就是进行合并的顺序,选择结
- 【分类】【损失函数】处理类别不平衡:CEFL 和 CEFL2 损失函数的实现与应用
丶2136
AI分类人工智能损失函数
引言在深度学习中的分类问题中,类别不平衡问题是常见的挑战之一。尤其在面部表情分类任务中,不同表情类别的样本数量可能差异较大,比如“开心”表情的样本远远多于“生气”表情。面对这种情况,普通的交叉熵损失函数容易导致模型过拟合到大类样本,忽略少数类样本。为了有效解决类别不平衡问题,Class-balancedExponentialFocalLoss(CEFL)和Class-balancedExponen
- 交叉熵损失函数(Cross-Entropy Loss)
我叫罗泽南
深度学习人工智能
原理交叉熵损失函数是深度学习中分类问题常用的损失函数,特别适用于多分类问题。它通过度量预测分布与真实分布之间的差异,来衡量模型输出的准确性。交叉熵的数学公式交叉熵的定义如下:CrossEntroyLoss=−∑i=1Nyi⋅log(y^i)\begin{equation}CrossEntroyLoss=-\sum_{i=1}^{N}y_i\cdotlog(\hat{y}_i)\end{equati
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- qwenvl 代码中的attention pool 注意力池如何理解,attention pool注意力池是什么?
OpenSani
AI大模型计算机视觉语言模型qwenvlLLM
qwenvl中的attentionpool如何理解,其实这就是一个概念的问题看qwenvl的huggingface的代码的时候,发现代码里有一个Resampler以及attn_pool,这和之前理解的连接池线程池表示资源复用的意思不太一样,查了一下:注意这里的pool和线程池连接池里面的pool不一样:深度学习中的池化:池化在深度学习中主要指通过滑动窗口对特征图进行下采样,提取最重要的特征,减少计
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- 全局变量的优缺点
时光札记z
javac++c语言开发语言
全局变量的优缺点1.写在前面在上一文中,我谈到了在完成项目中将需要的变量分为了“全局变量”和“局部变量”,但是在后来的学习中发现,虽然全局变量有一些优点,但同时也伴随着许多的缺点,于是在此做出一些小结,并寻找替代全局变量的方法。2.全局变量的定义全局变量也称为外部变量,它是在函数外部定义的变量。它不属于哪一个函数,它属于一个源程序文件。其作用域是整个源程序。在函数中使用全局变量,一般应作全局变量说
- Spark Livy 指南及livy部署访问实践
house.zhang
大数据-Spark大数据
背景:ApacheSpark是一个比较流行的大数据框架、广泛运用于数据处理、数据分析、机器学习中,它提供了两种方式进行数据处理,一是交互式处理:比如用户使用spark-shell,编写交互式代码编译成spark作业提交到集群上去执行;二是批处理,通过spark-submit提交打包好的spark应用jar到集群中进行执行。这两种运行方式都需要安装spark客户端配置好yarn集群信息,并打通集群网
- 单片机静态数码管显示
Uitwaaien54
单片机嵌入式硬件
在嵌入式系统学习中,51单片机是经典入门选择,而静态数码管是常用显示设备。本文深入探讨51单片机与静态数码管的结合应用,带你从原理到代码实现,全方位掌握这一技术。一、静态数码管工作原理数码管由多个发光二极管组成,常见的有共阳极和共阴极两种。共阳极数码管所有阳极连在一起,通过控制阴极电平来点亮对应段;共阴极则相反,所有阴极相连,控制阳极电平点亮段。静态显示时,每个数码管的段选线都单独接在一个I/O口
- 什么是AI显卡,英伟达与AMD显卡的全面对比
wit_@
人工智能python算法deeplearning大数据网络
什么是AI显卡?AI显卡是专门为人工智能计算任务设计和优化的图形处理器(GPU)。相比传统显卡,AI显卡具备更强的计算能力、更高的并行处理效率以及针对深度学习、数据科学等领域的特殊硬件支持。在人工智能领域,尤其是深度学习中,训练和推理任务需要处理大量的矩阵运算,这正是GPU擅长的领域。AI显卡通过高度并行的架构,可以显著提升训练速度和模型性能,同时降低功耗和延迟。常见的AI显卡用途包括:深度学习模
- python 特征选择方法_【来点干货】机器学习中常用的特征选择方法及非常详细的Python实例...
Blair Long
python特征选择方法
花费了很长时间整理编辑,转载请联系作者授权,违者必究。特征选择(Featureselection)是在构建预测模型的过程中减少输入变量的一个过程。它是机器学习中非常重要的一步并在很大程度上可以提高模型预测精度。这里我总结了一些机器学习中常见的比较有用的特征选择方法并附上相关python实现code。希望可以给大家一些启发。首先,我们为什么要进行特征选择呢?它有以下几个优点:减少过拟合:冗余数据常常
- 详解深度学习中的Dropout
nk妹妹
深度学习深度学习人工智能
Dropout是一种在神经网络训练中常用的正则化技术,其操作是在每次训练迭代中随机“丢弃”一部分神经元(即将其输出置为零)。以下是对这一操作的详细解释:一、基本思想Dropout的基本思想是减少神经元之间的复杂共适应关系,迫使网络在训练过程中不依赖于特定的神经元子集。这有助于增加模型的泛化能力,防止过拟合。二、具体实现随机选择:在每次训练迭代中,以一定的概率p(通常设定为0.2到0.5之间)随机选
- OSPF(2):基础配置、拓展配置
小度爱学习
网络安全从小白到大神网络
引言在前面的学习中我们知道了ospf的基础理论知识:ospf(1),那么这一节我们就来继续学习ospf的配置吧,而在本节我们的学习将基于以下这张图来讲解配置命令:R1、R2、R3都有一个环回接口,分别为1.1.1.1、2.2.2.2、3.3.3.3,每个物理接口的IP地址如图。由于在前面几篇内容中我们已经详细的介绍过如何配置IP地址了,所以本篇内容不再做详细展示,不会的同学可以点击参考之前的博客:
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc