- 深度学习如何入门?
nanshaws
yolov5深度学习
深度学习是机器学习的一个子领域,它基于人工神经网络的研究。入门深度学习可以分为以下几个步骤:基础知识准备:(1)掌握基础数学知识,特别是线性代数、概率论和统计学、微积分。(2)学习编程语言,Python是目前最流行的深度学习语言,因其简洁易学且有大量的库支持。(3)了解机器学习基础,包括监督学习和非监督学习的概念、模型评估与选择等。学习深度学习理论:(1)理解神经网络的基本组成,如神经元、激活函数
- 【深度学习理论】持续更新
一轮秋月
科研基础深度学习人工智能
文章目录1.统计学习理论1.统计学习理论统计学习理论,一款适合零成本搞深度学习的大冤种的方向从人类学习到机器学习的对比(学习的过程分为归纳和演绎),引出泛化和过拟合的概念。如何表示归纳的函数规律呢?以监督问题为例,需要学习X到Y的映射,先做假设空间,为了使假设空间和真实映射接近,需要损失函数来优化假设空间。学习的目的是学习数据的分布而不是每一个数据点本身,所以希望期望风险最小(期望风险即假设在数据
- 深度学习的发展史和主要应用方向
沉着冷静集中精力
深度学习人工智能
论深度学习笔者对于深度学习有着自己独特的见解…借这个机器学习课程大作业,发表一下我的观点。时光荏苒,社会的发展日新月异,越来越多的数据分析师、数据科学家倾向于对某次统计过程的分析进行研究,并把这种统计的模型称之为“人工智能”。没错,人工智能就是一个统计数据的过程。自己在学习的过程中很多时候也会怀疑,现阶段的深度学习理论究竟是不是真正的“人工智能”。人类,作为碳基生物,其如椰子般大的大脑却能存储近7
- Pytorch从零开始实战18
Liquor999
pytorch人工智能python
Pytorch从零开始实战——人脸图像生成本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——人脸图像生成环境准备模型定义开始训练可视化总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解并使用DCGAN
- 深度学习入门必知必会
诗雅颂
深度学习tensorflow机器学习神经网络
深度学习是机器学习领域的一个重要分支,它通过构建和训练神经网络模型来实现智能化任务。下面是入门深度学习的几个步骤:学习基础知识:了解机器学习和神经网络的基本概念,包括线性代数、概率论和统计学等数学基础知识。掌握编程技能:学习一种主流的编程语言,如Python,以及相关的库和框架,如NumPy、Pandas和TensorFlow等。这些工具将帮助你在实践中应用深度学习算法。学习深度学习理论:了解深度
- 深度学习理论方法:相似度计算
缘起性空、
深度学习人工智能神经网络
深度学习理论中的相似度计算,是衡量两个输入之间相似性或关联性的重要方法。它常用于比较输入是否相似或相关,广泛应用于推荐系统、图像识别、自然语言处理等领域。通过相似度计算,我们能更好地了解数据的内在结构和关系,从而进行更高效的数据分析和处理。例如,在自然语言处理中,利用相似度计算可以比较两个文本的语义相似度,进而实现文本分类、聚类、情感分析等任务。而在图像识别领域,借助相似度计算可以比较两个图像的相
- Pytorch从零开始实战15
Liquor999
pytorch人工智能python
Pytorch从零开始实战——ResNeXt-50算法实战本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——ResNeXt-50算法实战环境准备数据集模型选择开始训练可视化总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础
- 地球物理中的深度学习理论(DNN的架构、反向传播、梯度消失、梯度爆炸)
hhhhhhhhhhyyyyyy
深度学习
新的数据驱动技术,即深度学习(DL)引起了广泛的关注。DL能准确预测复杂系统,缓解大型地球物理应用中“维数灾难”。在未来地球物理学中涉及到DL的研究提供了几个有希望的方向,例如无监督学习(聚类)、迁移学习(利用之前标记好的数据)、多模态DL(通过DL实现和处理多元模态)、联邦学习、不确定性估计和主动学习。图1给出人工智能、机器学习、神经网络和深度学习之间的包含关系,以及深度学习方法的分类。图11、
- Pytorch从零开始实战12
Liquor999
pytorch人工智能python
Pytorch从零开始实战——DenseNet算法实战本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——DenseNet算法实战环境准备数据集模型选择开始训练可视化总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实
- 【深度学习理论】(1) 损失函数
立Sir
深度学习理论机器学习人工智能神经网络深度学习损失函数
各位同学好,最近学习了CS231N斯坦福计算机视觉公开课,讲的太精彩了,和大家分享一下。已知一张图像属于各个类别的分数,我们希望图像属于正确分类的分数是最大的,那如何定量的去衡量呢,那就是损失函数的作用了。通过比较分数与真实标签的差距,构造损失函数,就可以定量的衡量模型的分类效果,进而进行后续的模型优化和评估。构造损失函数之后,我们的目标就是将损失函数的值最小化,使用梯度下降的方法求得损失函数对于
- Pytorch从零开始实战11
Liquor999
pytorch人工智能python
Pytorch从零开始实战——ResNet-50V2算法实战本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——ResNet-50V2算法实战环境准备数据集模型选择开始训练可视化总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论
- 基于MATLAB的BP神经网络手写数字识别
matlab汪汪队
神经网络算法网络大数据编程语言
在信息化飞速发展的时代,光学字符识别是一个重要的信息录入与信息转化的手段,其中手写体数字的识别有着广泛地应用,如:邮政编码、统计报表、银行票据等等,因其广泛地应用范围,能带来巨大的经济与社会效益。本文结合深度学习理论,利用BP神经网络对手写体数字数据集MNIST进行分析,作为机器学习课程的一次实践,熟悉了目前广泛使用的Matlab工具,深入理解了神经网络的训练过程,作为非计算机专业的学生,结合该课
- Pytorch从零开始实战10
Liquor999
pytorch人工智能python
Pytorch从零开始实战——ResNet-50算法实战本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——ResNet-50算法实战环境准备数据集模型选择开始训练可视化模型预测总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论
- 深度学习理论知识入门【EM算法、VAE算法、GAN算法】和【RBM算法、MCMC算法、HMC算法】
_刘文凯_
深度学习基础深度学习算法生成对抗网络
目录深度学习理论知识入门首先,让我们了解第一个流程:现在,让我们看看第二个流程:EM算法GMM(高斯混合模型)深度学习理论知识入门首先,让我们了解第一个流程:EM(Expectation-Maximization):EM算法是一种迭代优化算法,用于在存在潜在变量的统计模型中进行参数估计。它通过交替的E步骤(Expectation,期望)和M步骤(Maximization,最大化)来最大化似然函数。
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- 实现语境学习的预训练任务复杂度研究,伯克利吴京风、港大邹荻凡分享(报名)...
智源社区
学习
分享嘉宾吴京风吴京风是加州大学伯克利分校西蒙斯研究所的博士后研究员,由PeterBartlett和BinYu教授指导。他在约翰斯·霍普金斯大学获得计算机科学博士学位,在北京大学获得数学硕士和学士学位。吴京风主要从事深度学习理论研究。JingfengWuisaPostdoctoralResearcherattheSimonsInstituteatUCBerkeley,hostedbyPeterBar
- Pytorch从零开始实战06
Liquor999
pytorch人工智能python
Pytorch从零开始实战——明星识别本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——明星识别环境准备数据集模型选择开始训练模型可视化模型预测总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解如何调
- Pytorch从零开始实战08
Liquor999
pytorch人工智能python
Pytorch从零开始实战——YOLOv5-C3模块实现本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——YOLOv5-C3模块实现环境准备数据集模型选择开始训练可视化模型预测总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论
- Pytorch从零开始实战07
Liquor999
pytorch人工智能python
Pytorch从零开始实战——咖啡豆识别本系列来源于365天深度学习训练营原作者K同学文章目录Pytorch从零开始实战——咖啡豆识别环境准备数据集模型选择训练模型可视化模型预测其他问题总结环境准备本文基于Jupyternotebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是手
- 【深度学习】自动炼丹炉
石头inDistance
深度学习人工智能python
在玩深度学习的时候,了解到超参数对于模型的训练效果有重要的影响。优化器不同的batchsize能够影响训练速度,同时也影响训练的损失值和准确率;不同的学习率对于模型的收敛速度也有影响。因此,对于指定数据集,能够准确预测的模型往往是模型工程师大量调整训练超参数的成果。这个调整超参数的过程,俗称炼丹,因为在训练之前往往很难得知训练出来的模型究竟能提供什么样的性能。然而,随着深度学习理论的不断发展,模型
- 一文掌握Windows平台GPU深度学习开发环境部署
机器未来
这是机器未来的第2篇文章,由机器未来原创写在前面:•博客简介:专注AIoT领域,追逐未来时代的脉搏,记录路途中的技术成长!•专栏简介:记录博主从0到1掌握物体检测工作流的过程,具备自定义物体检测器的能力•面向人群:具备深度学习理论基础的学生或初级开发者•专栏计划:接下来会逐步发布跨入人工智能的系列博文,敬请期待•Python零基础快速入门系列•快速入门Python数据科学系列•人工智能开发环境搭建
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts