UDAF
前两节分别介绍了基础UDF和UDTF,这一节我们将介绍最复杂的用户自定义聚合函数(UDAF)。用户自定义聚合函数(UDAF)接受从零行到多行的零个到多个列,然后返回单一值,如sum()、count()。要实现UDAF,我们需要实现下面的类:
org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver
org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator
AbstractGenericUDAFResolver检查输入参数,并且指定使用哪个resolver。在AbstractGenericUDAFResolver里,只需要实现一个方法:
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException;
但是,主要的逻辑处理还是在Evaluator中。我们需要继承GenericUDAFEvaluator,并且实现下面几个方法:
// 输入输出都是Object inspectors
public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException;
// AggregationBuffer保存数据处理的临时结果
abstract AggregationBuffer getNewAggregationBuffer() throws HiveException;
// 重新设置AggregationBuffer
public void reset(AggregationBuffer agg) throws HiveException;
// 处理输入记录
public void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException;
// 处理全部输出数据中的部分数据
public Object terminatePartial(AggregationBuffer agg) throws HiveException;
// 把两个部分数据聚合起来
public void merge(AggregationBuffer agg, Object partial) throws HiveException;
// 输出最终结果
public Object terminate(AggregationBuffer agg) throws HiveException;
在处理之前,先看下UADF的Enum GenericUDAFEvaluator.Mode。Mode有4中情况:
- PARTIAL1:Mapper阶段。从原始数据到部分聚合,会调用iterate()和terminatePartial()。
- PARTIAL2:Combiner阶段,在Mapper端合并Mapper的结果数据。从部分聚合到部分聚合,会调用merge()和terminatePartial()。
- FINAL:Reducer阶段。从部分聚合数据到完全聚合,会调用merge()和terminate()。
- COMPLETE:出现这个阶段,表示MapReduce中只用Mapper没有Reducer,所以Mapper端直接输出结果了。从原始数据到完全聚合,会调用iterate()和terminate()。
GenericUDAFResolver2
@Deprecated
public abstract interface GenericUDAFResolver {
public abstract GenericUDAFEvaluator getEvaluator(TypeInfo[] paramArrayOfTypeInfo) throws SemanticException;
}
已废弃
public abstract interface GenericUDAFResolver2 extends GenericUDAFResolver {
public abstract GenericUDAFEvaluator getEvaluator(GenericUDAFParameterInfo paramGenericUDAFParameterInfo)
throws SemanticException;
}
GenericUDAFEvaluator
@UDFType(deterministic = true)
public abstract class GenericUDAFEvaluator implements Closeable {
Mode mode;
public static boolean isEstimable(AggregationBuffer buffer) {
if (buffer instanceof AbstractAggregationBuffer) {
Class clazz = buffer.getClass();
AggregationType annotation = (AggregationType) clazz.getAnnotation(AggregationType.class);
return ((annotation != null) && (annotation.estimable()));
}
return false;
}
public void configure(MapredContext mapredContext) {
}
public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException {
this.mode = m;
return null;
}
public abstract AggregationBuffer getNewAggregationBuffer() throws HiveException;
public abstract void reset(AggregationBuffer paramAggregationBuffer) throws HiveException;
public void close() throws IOException {
}
public void aggregate(AggregationBuffer agg, Object[] parameters) throws HiveException {
if ((this.mode == Mode.PARTIAL1) || (this.mode == Mode.COMPLETE)) {
iterate(agg, parameters);
} else {
assert (parameters.length == 1);
merge(agg, parameters[0]);
}
}
public Object evaluate(AggregationBuffer agg) throws HiveException {
if ((this.mode == Mode.PARTIAL1) || (this.mode == Mode.PARTIAL2)) {
return terminatePartial(agg);
}
return terminate(agg);
}
public abstract void iterate(AggregationBuffer paramAggregationBuffer, Object[] paramArrayOfObject)
throws HiveException;
public abstract Object terminatePartial(AggregationBuffer paramAggregationBuffer) throws HiveException;
public abstract void merge(AggregationBuffer paramAggregationBuffer, Object paramObject) throws HiveException;
public abstract Object terminate(AggregationBuffer paramAggregationBuffer) throws HiveException;
public static abstract class AbstractAggregationBuffer implements GenericUDAFEvaluator.AggregationBuffer {
public int estimate() {
return -1;
}
}
public static abstract interface AggregationBuffer {
}
public static enum Mode {
PARTIAL1, PARTIAL2, FINAL, COMPLETE;
}
public static @interface AggregationType {
public abstract boolean estimable();
}
}
例子
count
/*** Eclipse Class Decompiler plugin, copyright (c) 2016 Chen Chao ([email protected]) ***/
package org.apache.hadoop.hive.ql.udf.generic;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.LongObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.io.LongWritable;
@Description(name = "count", value = "_FUNC_(*) - Returns the total number of retrieved rows, including rows containing NULL values.\n_FUNC_(expr) - Returns the number of rows for which the supplied expression is non-NULL.\n_FUNC_(DISTINCT expr[, expr...]) - Returns the number of rows for which the supplied expression(s) are unique and non-NULL.")
public class GenericUDAFCount implements GenericUDAFResolver2 {
private static final Log LOG;
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException {
return new GenericUDAFCountEvaluator();
}
public GenericUDAFEvaluator getEvaluator(GenericUDAFParameterInfo paramInfo) throws SemanticException {
TypeInfo[] parameters = paramInfo.getParameters();
if (parameters.length == 0) {
if (!(paramInfo.isAllColumns())) {
throw new UDFArgumentException("Argument expected");
}
if ((!($assertionsDisabled)) && (paramInfo.isDistinct()))
throw new AssertionError("DISTINCT not supported with *");
} else {
if ((parameters.length > 1) && (!(paramInfo.isDistinct()))) {
throw new UDFArgumentException("DISTINCT keyword must be specified");
}
assert (!(paramInfo.isAllColumns())) : "* not supported in expression list";
}
return new GenericUDAFCountEvaluator().setCountAllColumns(paramInfo.isAllColumns());
}
static {
LOG = LogFactory.getLog(GenericUDAFCount.class.getName());
}
public static class GenericUDAFCountEvaluator extends GenericUDAFEvaluator {
private boolean countAllColumns;
private LongObjectInspector partialCountAggOI;
private LongWritable result;
public GenericUDAFCountEvaluator() {
this.countAllColumns = false;
}
public ObjectInspector init(GenericUDAFEvaluator.Mode m, ObjectInspector[] parameters) throws HiveException {
super.init(m, parameters);
this.partialCountAggOI = PrimitiveObjectInspectorFactory.writableLongObjectInspector;
this.result = new LongWritable(0L);
return PrimitiveObjectInspectorFactory.writableLongObjectInspector;
}
private GenericUDAFCountEvaluator setCountAllColumns(boolean countAllCols) {
this.countAllColumns = countAllCols;
return this;
}
public GenericUDAFEvaluator.AggregationBuffer getNewAggregationBuffer() throws HiveException {
CountAgg buffer = new CountAgg();
reset(buffer);
return buffer;
}
public void reset(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
((CountAgg) agg).value = 0L;
}
public void iterate(GenericUDAFEvaluator.AggregationBuffer agg, Object[] parameters) throws HiveException {
if (parameters == null) {
return;
}
if (this.countAllColumns) {
assert (parameters.length == 0);
((CountAgg) agg).value += 1L;
} else {
assert (parameters.length > 0);
boolean countThisRow = true;
for (Object nextParam : parameters) {
if (nextParam == null) {
countThisRow = false;
break;
}
}
if (countThisRow)
((CountAgg) agg).value += 1L;
}
}
public void merge(GenericUDAFEvaluator.AggregationBuffer agg, Object partial) throws HiveException {
if (partial != null) {
long p = this.partialCountAggOI.get(partial);
((CountAgg) agg).value += p;
}
}
public Object terminate(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
this.result.set(((CountAgg) agg).value);
return this.result;
}
public Object terminatePartial(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
return terminate(agg);
}
@GenericUDAFEvaluator.AggregationType(estimable = true)
static class CountAgg extends GenericUDAFEvaluator.AbstractAggregationBuffer {
long value;
public int estimate() {
return 8;
}
}
}
}
sum
udaf 需要hive的sql和group by联合使用。hive的group by对于每个分组,只能返回一条记录。
开发通用udaf有另个步骤,一个是编写resolver类,第二个是编写evaluator类。resolver负责类型检查,操作符重载。evaluator负责实现真正的udaf逻辑、
以sum为例、
reslver通常继承resolver2.但是建议继承resolver。隔离将来hive接口的变化。
public class GenericUDAFSum extends AbstractGenericUDAFResolver {
static final Log LOG = LogFactory.getLog(GenericUDAFSum.class.getName());
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters)
throws SemanticException
{
if (parameters.length != 1) {
throw new UDFArgumentTypeException(parameters.length - 1, "Exactly one argument is expected.");
}
if (parameters[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentTypeException(0, "Only primitive type arguments are accepted but " + parameters[0].getTypeName() + " is passed.");
}
switch (1.$SwitchMap$org$apache$hadoop$hive$serde2$objectinspector$PrimitiveObjectInspector$PrimitiveCategory[((org.apache.hadoop.hive.serde2.typeinfo.PrimitiveTypeInfo)parameters[0]).getPrimitiveCategory().ordinal()]) {
case 1:
case 2:
case 3:
case 4:
return new GenericUDAFSumLong();
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:
return new GenericUDAFSumDouble();
case 11:
return new GenericUDAFSumHiveDecimal();
case 12:
case 13:
}
throw new UDFArgumentTypeException(0, "Only numeric or string type arguments are accepted but " + parameters[0].getTypeName() + " is passed.");
}
着就是udaf的代码骨架。创建一个log对象。 重写getEvaluator方法。根据sql传入的参数类型,返回争取的evaluator。主要实现操作符的重载。
实现evaluator
下面以genericudafsumlong为例。
public static class GenericUDAFSumLong extends GenericUDAFEvaluator {
private PrimitiveObjectInspector inputOI;
private LongWritable result;
private boolean warned;
public GenericUDAFSumLong() {
this.warned = false;
}
//这个方法返回可udaf的返回类型。这里定义返回类型为long
public ObjectInspector init(GenericUDAFEvaluator.Mode m, ObjectInspector[] parameters) throws HiveException {
assert (parameters.length == 1);
super.init(m, parameters);
this.result = new LongWritable(0L);
this.inputOI = ((PrimitiveObjectInspector) parameters[0]);
return PrimitiveObjectInspectorFactory.writableLongObjectInspector;
}
//创建新的聚合计算需要的内存,用来存储mapper,combiner,reducer运算过程中的相加总和。
public GenericUDAFEvaluator.AggregationBuffer getNewAggregationBuffer() throws HiveException {
SumLongAgg result = new SumLongAgg();
reset(result);
return result;
}
//mr支持mapper和reducer的重用,所以为了兼容,也要做内存的重用
public void reset(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
SumLongAgg myagg = (SumLongAgg) agg;
myagg.empty = true;
myagg.sum = 0L;
}
//map阶段,只要把保存道歉和的对象agg,再加上输入的参数,就可以了。
public void iterate(GenericUDAFEvaluator.AggregationBuffer agg, Object[] parameters) throws HiveException {
assert (parameters.length == 1);
try {
merge(agg, parameters[0]);
} catch (NumberFormatException e) {
if (!(this.warned)) {
this.warned = true;
GenericUDAFSum.LOG.warn(super.getClass().getSimpleName() + " " + StringUtils.stringifyException(e));
}
}
}
//mapper结束要返回的结果和combiner结束要返回的结果。
public Object terminatePartial(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
return terminate(agg);
}
//combiner合并map返回的结果,还有reducer合并mapper或combiner返回的结果
public void merge(GenericUDAFEvaluator.AggregationBuffer agg, Object partial) throws HiveException {
if (partial != null) {
SumLongAgg myagg = (SumLongAgg) agg;
myagg.sum += PrimitiveObjectInspectorUtils.getLong(partial, this.inputOI);
myagg.empty = false;
}
}
//reducer返回结果,或者是只有mapper,没有reducer,在mapper端返回结果。
public Object terminate(GenericUDAFEvaluator.AggregationBuffer agg) throws HiveException {
SumLongAgg myagg = (SumLongAgg) agg;
if (myagg.empty) {
return null;
}
this.result.set(myagg.sum);
return this.result;
}
//存储sum值得类
@GenericUDAFEvaluator.AggregationType(estimable = true)
static class SumLongAgg extends GenericUDAFEvaluator.AbstractAggregationBuffer {
boolean empty;
long sum;
public int estimate() {
return 12;
}
}
}