最近在做leetcode上二分查找的题目,看到了一篇文章,讲的很好,现在做个记录。
思路 我相信对很多读者朋友来说,编写二分查找的算法代码属于玄学编程,虽然看起来很简单,就是会出错,要么会漏个等号,要么少加个 1。
不要气馁,因为二分查找其实并不简单。看看 Knuth 大佬(发明 KMP 算法的那位)怎么说的:
Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky…
这句话可以这样理解:思路很简单,细节是魔鬼。
本文以问答的形式,探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。第一个场景是最简单的算法形式,解决这道题,后两个场景就是本题。 而且,我们就是要深入细节,比如不等号是否应该带等号,mid是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。
int binarySearch(int[] nums, int target) {
int left = 0, right = ...;
while(...) {
int mid = (right + left) / 2;
if (nums[mid] == target) {
...
} else if (nums[mid] < target) {
left = ...
} else if (nums[mid] > target) {
right = ...
}
}
return ...;
}
分析二分查找的一个技巧是:不要出现 else
,而是把所有情况用 else if
写清楚,这样可以清楚地展现所有细节。本文都会使用 else if
,旨在讲清楚,读者理解后可自行简化。mid=left+(right-left)/2
。因为当left和right都很大的时候,他们相加就会溢出,而这种方法不会溢出。以后最好使用这个来求mid。int binarySearch(int[] nums, int target) {
int left = 0;
int right = nums.length - 1; // 注意
while(left <= right) {
int mid = (right + left) / 2;
if(nums[mid] == target)
return mid;
else if (nums[mid] < target)
left = mid + 1; // 注意
else if (nums[mid] > target)
right = mid - 1; // 注意
}
return -1;
}
nums.length-1
,即最后一个元素的索引,而不是 nums.length
。nums.length
是越界的。 if(nums[mid] == target)
return mid;
但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终 止,意味着你没得找了,就等于没找到嘛。
while(left <= right)
的终止条件是 left == right + 1
,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候搜索区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。
while(left < right)
的终止条件是 left == right
,写成区间的形式就是 [left, right],或者带个具体的数字进去 [2, 2],这时候搜索区间非空,还有一个数 22,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。
当然,如果你非要用 while(left < right)
也可以,我们已经知道了出错的原因,就打个补丁好了
//...
while(left < right) {
// ...
}
return nums[left] == target ? left : -1;
left = mid + 1,right = mid - 1
?我看有的代码是 right = mid
或者 left = mid
,没有这些加加减减,到底怎么回事,怎么判断?寻找左侧边界的二分搜索
直接看代码,其中的标记是需要注意的细节:
int left_bound(int[] nums, int target) {
if (nums.length == 0) return -1;
int left = 0;
int right = nums.length; // 注意
while (left < right) { // 注意
int mid = (left + right) / 2;
if (nums[mid] == target) {
right = mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid; // 注意
}
}
return left;
}
while(left < right)
而不是 <= ?right = nums.length
而不是 nums.length - 1
。因此每次循环的「搜索区间」是 [left, right) 左闭右开。while(left < right)
终止的条件是 left == right
,此时搜索区间 [left, left) 为空,所以可以正确终止。对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums 中小于 2 的元素有 1 个。
比如对于有序数组 nums = [2,3,5,7], target = 1,算法会返回 0,含义是:nums 中小于 1 的元素有 0 个。
再比如说 nums 不变,target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。
综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间 [0, nums.length],所以我们简单添加两行代码就 能在正确的时候 return -1:
while (left < right) {
//...
}
// target 比所有数都大
if (left == nums.length) return -1;
// 类似之前算法的处理方式
return nums[left] == target ? left : -1;
为什么 left = mid + 1,right = mid ?和之前的算法不一样?
答:这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右开,所以当 nums[mid] 被检测之后,下一步的搜索区间应该去掉 mid 分割成两个区间,即 [left, mid) 或 [mid + 1, right)。
为什么该算法能够搜索左侧边界?
答:关键在于对于 nums[mid] == target 这种情况的处理:
if (nums[mid] == target)
right = mid;
可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid) 中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。
3. 为什么返回 left 而不是 right?
答:都是一样的,因为 while 终止的条件是 left == right
。
4. 寻找右侧边界的二分查找
寻找右侧边界和寻找左侧边界的代码差不多,只有两处不同,已标注:
int right_bound(int[] nums, int target) {
if (nums.length == 0) return -1;
int left = 0, right = nums.length;
while (left < right) {
int mid = (left + right) / 2;
if (nums[mid] == target) {
left = mid + 1; // 注意
} else if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid;
}
}
return left - 1; // 注意
}
为什么这个算法能够找到右侧边界?
答:类似地,关键点还是这里:
if (nums[mid] == target) {
left = mid + 1;
当 nums[mid] == target
时,不要立即返回,而是增大「搜索区间」的下界 left,使得区间不断向右收缩,达到锁定右侧边界的目的。
为什么最后返回 left - 1
而不像左侧边界的函数,返回 left
?而且我觉得这里既然是搜索右侧边界,应该返回 right 才对。
答:首先,while 循环的终止条件是 left == right
,所以 left 和 right 是一样的,你非要体现右侧的特点,返回 right - 1
好了。
至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:
if (nums[mid] == target) {
left = mid + 1;
因为我们对 left 的更新必须是 left = mid + 1
,就是说 while 循环结束时,nums[left]
一定不等于 target 了,而 nums[left-1]
可能是 target。
至于为什么 left 的更新必须是 left = mid + 1
,同左侧边界搜索,就不再赘述。
为什么没有返回 -1的操作?如果 nums 中不存在 target 这个值,怎么办?
答:类似之前的左侧边界搜索,因为 while 的终止条件是 left == right
,就是说 left 的取值范围是 [0, nums.length]
,所以可以添加两行代码,正确地返回 −1:
while (left < right) {
// ...
}
if (left == 0) return -1;
return nums[left-1] == target ? (left-1) : -1;
第一个,最基本的二分查找算法:
第一个,最基本的二分查找算法:
因为我们初始化 right = nums.length - 1
所以决定了我们的「搜索区间」是 [left, right]
所以决定了 while (left <= right)
同时也决定了 left = mid+1 和 right = mid-1
因为我们只需找到一个 target 的索引即可
所以当 nums[mid] == target 时可以立即返回
第二个,寻找左侧边界的二分查找:
因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid
因为我们需找到 target 的最左侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧右侧边界以锁定左侧边界
第三个,寻找右侧边界的二分查找:
因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid
因为我们需找到 target 的最右侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧左侧边界以锁定右侧边界
又因为收紧左侧边界时必须 left = mid + 1
所以最后无论返回 left 还是 right,必须减一
如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。
通过本文,你学会了:
分析二分查找代码时,不要出现 else
,全部展开成 else if
方便理解。
注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。
如需要搜索左右边界,只要在 nums[mid] == target
时做修改即可。搜索右侧时需要减一。
以后就算遇到其他的二分查找变形,运用这几点技巧,也能保证你写出正确的代码。