# coding: utf-8
# ## 图像基本操作
# #### 环境配置地址:
#
# - Anaconda:https://www.anaconda.com/download/
#
# - Python_whl:https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv
#
# - eclipse:按照自己的喜好,选择一个能debug就好
# ![title](lena_img.png)
# ### 数据读取-图像
# - cv2.IMREAD_COLOR:彩色图像
# - cv2.IMREAD_GRAYSCALE:灰度图像
# In[1]:
import cv2 #opencv读取的格式是BGR
import matplotlib.pyplot as plt
import numpy as np
get_ipython().run_line_magic('matplotlib', 'inline')
img=cv2.imread('cat.jpg')
# In[2]:
img
# In[3]:
#图像的显示,也可以创建多个窗口
cv2.imshow('image',img)
# 等待时间,毫秒级,0表示任意键终止
cv2.waitKey(0)
cv2.destroyAllWindows()
# In[4]:
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# In[5]:
img.shape
# In[6]:
img=cv2.imread('cat.jpg',cv2.IMREAD_GRAYSCALE)
img
# In[7]:
img.shape
# In[8]:
#图像的显示,也可以创建多个窗口
cv2.imshow('image',img)
# 等待时间,毫秒级,0表示任意键终止
cv2.waitKey(10000)
cv2.destroyAllWindows()
# In[9]:
#保存
cv2.imwrite('mycat.png',img)
# In[10]:
type(img)
# In[11]:
img.size
# In[12]:
img.dtype
# ### 数据读取-视频
# - cv2.VideoCapture可以捕获摄像头,用数字来控制不同的设备,例如0,1。
# - 如果是视频文件,直接指定好路径即可。
# In[13]:
vc = cv2.VideoCapture('test.mp4')
# In[14]:
# 检查是否打开正确
if vc.isOpened():
oepn, frame = vc.read()
else:
open = False
# In[15]:
while open:
ret, frame = vc.read()
if frame is None:
break
if ret == True:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('result', gray)
if cv2.waitKey(100) & 0xFF == 27:
break
vc.release()
cv2.destroyAllWindows()
# ### 截取部分图像数据
# In[16]:
img=cv2.imread('cat.jpg')
cat=img[0:50,0:200]
cv_show('cat',cat)
# ### 颜色通道提取
# In[17]:
b,g,r=cv2.split(img)
# In[18]:
r
# In[19]:
r.shape
# In[20]:
img=cv2.merge((b,g,r))
img.shape
# In[21]:
# 只保留R
cur_img = img.copy()
cur_img[:,:,0] = 0
cur_img[:,:,1] = 0
cv_show('R',cur_img)
# In[22]:
# 只保留G
cur_img = img.copy()
cur_img[:,:,0] = 0
cur_img[:,:,2] = 0
cv_show('G',cur_img)
# In[23]:
# 只保留B
cur_img = img.copy()
cur_img[:,:,1] = 0
cur_img[:,:,2] = 0
cv_show('B',cur_img)
# ### 边界填充
# In[24]:
top_size,bottom_size,left_size,right_size = (50,50,50,50)
replicate = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_CONSTANT, value=0)
# In[25]:
import matplotlib.pyplot as plt
plt.subplot(231), plt.imshow(img, 'gray'), plt.title('ORIGINAL')
plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REPLICATE')
plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('REFLECT')
plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('REFLECT_101')
plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP')
plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT')
plt.show()
# - BORDER_REPLICATE:复制法,也就是复制最边缘像素。
# - BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abcdefgh|hgfedcb
# - BORDER_REFLECT_101:反射法,也就是以最边缘像素为轴,对称,gfedcb|abcdefgh|gfedcba
# - BORDER_WRAP:外包装法cdefgh|abcdefgh|abcdefg
# - BORDER_CONSTANT:常量法,常数值填充。
# ### 数值计算
# In[26]:
img_cat=cv2.imread('cat.jpg')
img_dog=cv2.imread('dog.jpg')
# In[27]:
img_cat2= img_cat +10
img_cat[:5,:,0]
# In[28]:
img_cat2[:5,:,0]
# In[29]:
#相当于% 256
(img_cat + img_cat2)[:5,:,0]
# In[30]:
cv2.add(img_cat,img_cat2)[:5,:,0]
# ### 图像融合
# In[31]:
img_cat + img_dog
# In[32]:
img_cat.shape
# In[33]:
img_dog = cv2.resize(img_dog, (500, 414))
img_dog.shape
# In[34]:
res = cv2.addWeighted(img_cat, 0.4, img_dog, 0.6, 0)
# In[35]:
plt.imshow(res)
# In[36]:
res = cv2.resize(img, (0, 0), fx=4, fy=4)
plt.imshow(res)
# In[37]:
res = cv2.resize(img, (0, 0), fx=1, fy=3)
plt.imshow(res)