本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明.
环境:
主机:WIN10
python版本:3.5
开发环境:pyCharm
说明:
算法流程分析:
数据结构:
- frontier:边缘。存储未扩展的节点
- explored:探索集。存储的是状态(注意,这个之前的算法有区别)
流程:
- 如果边缘为空,则返回失败。操作:EMPTY?(frontier)
- 否则从边缘中选择一个叶子节点。操作:POP(frontier)
- 将叶子节点的状态放在探索集
- 遍历叶子节点的所有动作
- 每个动作产生子节点
- 如果子节点的状态不在探索集或者边缘,则目标测试:通过返回
- 失败则放入边缘。操作:INSERT(child, frontier)
注意:算法中只有在遍历叶子节点所有动作,即宽度搜索之前,才将叶子节点的状态放入到探索集。在遍历过程中,如果子节点没有通过目标测试,并没有将子节点的状态放入探索集,而是将子节点放在边缘中,准备下一轮基于本子节点的宽度遍历。
算法性能分析:
- 完备的
- 不是最优的
- 时间复杂度:
假设每个状态都有b个后继,解的深度为d,则节点总数:
b + b^2 + b^3 + … + b^d = O(b^d)
以上算法是在扩展节点时而不是生成时进行目标检测,所以时间复杂度应该是O(b^(d+1))
- 空间复杂度:
每个已扩展的节点都保存到探索集,探索集的节点数:O(b(d - 1)),边缘节点中:O(b^d)。所以控件复杂度为O(b^d),由边缘集所决定。

城市地图:
源码:
import pandas as pd
from pandas import Series, DataFrame
# 城市信息:city1 city2 path_cost
_city_info = None
# 按照路径消耗进行排序的FIFO,低路径消耗在前面
_frontier_priority = []
# 节点数据结构
class Node:
def __init__(self, state, parent, action, path_cost):
self.state = state
self.parent = parent
self.action = action
self.path_cost = path_cost
def main():
global _city_info
import_city_info()
while True:
src_city = input('input src city\n')
dst_city = input('input dst city\n')
result = breadth_first_search(src_city, dst_city)
if not result:
print('from city: %s to city %s search failure' % (src_city, dst_city))
else:
print('from city: %s to city %s search success' % (src_city, dst_city))
path = []
while True:
path.append(result.state)
if result.parent is None:
break
result = result.parent
size = len(path)
for i in range(size):
if i < size - 1:
print('%s->' % path.pop(), end='')
else:
print(path.pop())
def import_city_info():
global _city_info
data = [{'city1': 'Oradea', 'city2': 'Zerind', 'path_cost': 71},
{'city1': 'Oradea', 'city2': 'Sibiu', 'path_cost': 151},
{'city1': 'Zerind', 'city2': 'Arad', 'path_cost': 75},
{'city1': 'Arad', 'city2': 'Sibiu', 'path_cost': 140},
{'city1': 'Arad', 'city2': 'Timisoara', 'path_cost': 118},
{'city1': 'Timisoara', 'city2': 'Lugoj', 'path_cost': 111},
{'city1': 'Lugoj', 'city2': 'Mehadia', 'path_cost': 70},
{'city1': 'Mehadia', 'city2': 'Drobeta', 'path_cost': 75},
{'city1': 'Drobeta', 'city2': 'Craiova', 'path_cost': 120},
{'city1': 'Sibiu', 'city2': 'Fagaras', 'path_cost': 99},
{'city1': 'Sibiu', 'city2': 'Rimnicu Vilcea', 'path_cost': 80},
{'city1': 'Rimnicu Vilcea', 'city2': 'Craiova', 'path_cost': 146},
{'city1': 'Rimnicu Vilcea', 'city2': 'Pitesti', 'path_cost': 97},
{'city1': 'Craiova', 'city2': 'Pitesti', 'path_cost': 138},
{'city1': 'Fagaras', 'city2': 'Bucharest', 'path_cost': 211},
{'city1': 'Pitesti', 'city2': 'Bucharest', 'path_cost': 101},
{'city1': 'Bucharest', 'city2': 'Giurgiu', 'path_cost': 90},
{'city1': 'Bucharest', 'city2': 'Urziceni', 'path_cost': 85},
{'city1': 'Urziceni', 'city2': 'Vaslui', 'path_cost': 142},
{'city1': 'Urziceni', 'city2': 'Hirsova', 'path_cost': 98},
{'city1': 'Neamt', 'city2': 'Iasi', 'path_cost': 87},
{'city1': 'Iasi', 'city2': 'Vaslui', 'path_cost': 92},
{'city1': 'Hirsova', 'city2': 'Eforie', 'path_cost': 86}]
_city_info = DataFrame(data, columns=['city1', 'city2', 'path_cost'])
# print(_city_info)
def breadth_first_search(src_state, dst_state):
global _city_info
node = Node(src_state, None, None, 0)
# 目标测试
if node.state == dst_state:
return node
frontier = [node]
explored = []
while True:
if len(frontier) == 0:
return False
node = frontier.pop(0)
explored.append(node.state)
if node.parent is not None:
print('deal node:state:%s\tparent state:%s\tpath cost:%d' % (node.state, node.parent.state, node.path_cost))
else:
print('deal node:state:%s\tparent state:%s\tpath cost:%d' % (node.state, None, node.path_cost))
# 遍历子节点
for i in range(len(_city_info)):
dst_city = ''
if _city_info['city1'][i] == node.state:
dst_city = _city_info['city2'][i]
elif _city_info['city2'][i] == node.state:
dst_city = _city_info['city1'][i]
if dst_city == '':
continue
child = Node(dst_city, node, 'go', node.path_cost + _city_info['path_cost'][i])
print('\tchild node:state:%s path cost:%d' % (child.state, child.path_cost))
if child.state not in explored and not is_node_in_frontier(frontier, child):
# 目标测试
if child.state == dst_state:
print('\t\t this child is goal!')
return child
frontier.append(child)
print('\t\t add child to child')
def is_node_in_frontier(frontier, node):
for x in frontier:
if node.state == x.state:
return True
return False
if __name__ == '__main__':
main()
利用算法求解:
input src city
Zerind
input dst city
Urziceni
deal node:state:Zerind parent state:None path cost:0
child node:state:Oradea path cost:71
add child to child
child node:state:Arad path cost:75
add child to child
deal node:state:Oradea parent state:Zerind path cost:71
child node:state:Zerind path cost:142
child node:state:Sibiu path cost:222
add child to child
deal node:state:Arad parent state:Zerind path cost:75
child node:state:Zerind path cost:150
child node:state:Sibiu path cost:215
child node:state:Timisoara path cost:193
add child to child
deal node:state:Sibiu parent state:Oradea path cost:222
child node:state:Oradea path cost:373
child node:state:Arad path cost:362
child node:state:Fagaras path cost:321
add child to child
child node:state:Rimnicu Vilcea path cost:302
add child to child
deal node:state:Timisoara parent state:Arad path cost:193
child node:state:Arad path cost:311
child node:state:Lugoj path cost:304
add child to child
deal node:state:Fagaras parent state:Sibiu path cost:321
child node:state:Sibiu path cost:420
child node:state:Bucharest path cost:532
add child to child
deal node:state:Rimnicu Vilcea parent state:Sibiu path cost:302
child node:state:Sibiu path cost:382
child node:state:Craiova path cost:448
add child to child
child node:state:Pitesti path cost:399
add child to child
deal node:state:Lugoj parent state:Timisoara path cost:304
child node:state:Timisoara path cost:415
child node:state:Mehadia path cost:374
add child to child
deal node:state:Bucharest parent state:Fagaras path cost:532
child node:state:Fagaras path cost:743
child node:state:Pitesti path cost:633
child node:state:Giurgiu path cost:622
add child to child
child node:state:Urziceni path cost:617
this child is goal!
from city: Zerind to city Urziceni search success
Zerind->Oradea->Sibiu->Fagaras->Bucharest->Urziceni
input src city
Zerind
input dst city
Urziceni
deal node:state:Zerind parent state:None path cost:0
child node:state:Oradea path cost:71
add child to child
child node:state:Arad path cost:75
add child to child
deal node:state:Oradea parent state:Zerind path cost:71
child node:state:Zerind path cost:142
child node:state:Sibiu path cost:222
add child to child
deal node:state:Arad parent state:Zerind path cost:75
child node:state:Zerind path cost:150
child node:state:Sibiu path cost:215
child node:state:Timisoara path cost:193
add child to child
deal node:state:Sibiu parent state:Oradea path cost:222
child node:state:Oradea path cost:373
child node:state:Arad path cost:362
child node:state:Fagaras path cost:321
add child to child
child node:state:Rimnicu Vilcea path cost:302
add child to child
deal node:state:Timisoara parent state:Arad path cost:193
child node:state:Arad path cost:311
child node:state:Lugoj path cost:304
add child to child
deal node:state:Fagaras parent state:Sibiu path cost:321
child node:state:Sibiu path cost:420
child node:state:Bucharest path cost:532
add child to child
deal node:state:Rimnicu Vilcea parent state:Sibiu path cost:302
child node:state:Sibiu path cost:382
child node:state:Craiova path cost:448
add child to child
child node:state:Pitesti path cost:399
add child to child
deal node:state:Lugoj parent state:Timisoara path cost:304
child node:state:Timisoara path cost:415
child node:state:Mehadia path cost:374
add child to child
deal node:state:Bucharest parent state:Fagaras path cost:532
child node:state:Fagaras path cost:743
child node:state:Pitesti path cost:633
child node:state:Giurgiu path cost:622
add child to child
child node:state:Urziceni path cost:617
this child is goal!
from city: Zerind to city Urziceni search success
Zerind->Oradea->Sibiu->Fagaras->Bucharest->Urziceni
从Zerind到Urziceni的最优路径应该是Zerind->Arad->Sibiu->Rimnicu Vilcea->Pitesti->Bucharest->Urziceni,所以本算法不是最优算法,只是一个解。