【PyTorch学习笔记】一、两个全连接层的感知机实现(损失函数及优化器的使用)

demo1 

import torch
from torch import nn
# 全连接类
class Linear(nn.Module):
    def __init__(self, in_dim, out_dim):
        super(Linear, self).__init__()
        # Parameter 为Tensor的构造方法,默认求导
        # w b 为网络需要学习的参数
        self.w = nn.Parameter(torch.randn(in_dim, out_dim))
        self.b = nn.Parameter(torch.randn(out_dim))
    # 前向传播的实现
    def forward(self, x):
        x = x.matmul(self.w)   # x*w  .matmul实现矩阵相乘
        y = x + self.b.expand_as(x)  # y = wx + b  .expand_as 保证b和x的矩阵形状一致
        return y

# 一
#两层感知机类
#nn.Module(自动学习参数)与nn.functional(不自动学习参数)都提供了很多网络层和函数功能。
# class Perception(nn.Module):
#     def __init__(self, in_dim, hid_dim, out_dim):
#         super(Perception, self).__init__()
#         # 定义了两层全连接层 调用了上个函数Linear的子module
#         self.layer1 = Linear(in_dim, hid_dim)
#         self.layer2 = Linear(hid_dim, out_dim)
#     def forward(self, x):
#         x = self.layer1(x)
#         y = torch.sigmoid(x)  #使用sigmoid作为激活函数
#         y = self.layer2(y)
#         y = torch.sigmoid(y)
#         return y

# 二 当layer1与layer2是直接传递的时候,使用nn.Sequential快速搭建
# nn.Sequential 像一个有序的列表,每层为列表中的一个元素
class Perception(nn.Module):
    def __init__(self, in_dim, hid_dim, out_dim):
        super(Perception, self).__init__()
        self.layer = nn.Sequential(
            nn.Linear(in_dim, hid_dim),
            nn.Sigmoid(),
            nn.Linear(hid_dim, out_dim),
            nn.Sigmoid()
        )
    def forward(self, x):
        y = self.layer(x)
        return y

调用上述感知机网络

import torch
from torch import nn
from perception import Perception
import torch.nn.functional as F

perception = Perception(2, 3, 2) #实例化类 in_dim=2, hid_dim=3, out_dim=2
print(perception)
# Perception(
#   (layer1): Linear()
#   (layer2): Linear()
# )
# for name, parameter in perception.named_parameters():
#     print(name, parameter)
data = torch.randn(4, 2)  # 4个样本 每个样本两个维度
output = perception(data)
print(output)
# tensor([[0.9435, 0.8897],
#         [0.9412, 0.8919],
#         [0.9431, 0.8973],
#         [0.9435, 0.9285]], grad_fn=)

# 损失函数
label = torch.Tensor([0, 1, 1, 0]).long() #设置标签
criterion = nn.CrossEntropyLoss() #实例化交叉熵类
loss_nn = criterion(output, label)
print(loss_nn)
# 也可以使用nn.functional 函数直接使用交叉熵函数
loss_functional = F.cross_entropy(output, label)
print(loss_functional)

demo2

from torch import nn
class MLP(nn.Module):
    def __init__(self, in_dim, hid_dim1, hid_dim2, out_dim):
        super(MLP, self).__init__()
        self.layer = nn.Sequential(
            nn.Linear(in_dim, hid_dim1),
            nn.ReLU(),
            nn.Linear(hid_dim1, hid_dim2),
            nn.ReLU(),
            nn.Linear(hid_dim2, out_dim),
            nn.ReLU()
        )
    def forward(self, x):
        x = self.layer(x)
        return x

 

import torch
from mlp import MLP
from torch import optim
from torch import nn

model = MLP(28*28, 300, 200, 10)
print(model)
# 使用SGD优化器 学习率为0.01
# parameters 是有序字典
optimizer = optim.SGD(params=model.parameters(), lr=0.01)
for name, parameter in model.named_parameters():
    print(name)
# layer.0.weight
# layer.0.bias
# layer.2.weight
# layer.2.bias
# layer.4.weight
# layer.4.bias
data = torch.randn(10, 28*28)  #10张图 每一张图长和宽为28
output = model(data)
label = torch.Tensor([1, 0, 4, 7, 9, 3, 4, 5, 3, 2]).long()
# 求损失
criterion = nn.CrossEntropyLoss()
loss = criterion(output, label)
print(loss) #tensor(2.2858, grad_fn=)

optimizer.zero_grad()# 清空梯度,在每次优化前都要使用该操作
loss.backward() #损失的反向传播
optimizer.step() #利用优化器进行梯度更新

 

你可能感兴趣的:(pytorch学习笔记)