Pytorch学习笔记(五)--多层神经网络

前请提要
Pytorch学习笔记(一)--Tensor和Variable
Pytorch学习笔记(二)--autograd and dynamic-graph
Pytorch学习笔记(三)--linear regression andgradient descend(线性回归和梯度下降)
Pytorch学习笔记(四)--Logistic 回归模型

一.多层神经网络

之前学习的线性模型和logistic模型可以看作是单层神经网络,在logistic模型是 y = sigmoid(wx + b),sigmoid可以看作是激活函数,在神经网络中必须有激活函数.如果不使用激活函数 y = wn(w1x) => y = w*n 本质上就变成了一层神经网络.

神经网络的原型来源与人类的神经网络,即从上个神经元等传来的信号经过突触传入的下个神经元,通过激活这个神经元,让信号传递到下个神经元.神经网络就是上一层网络的输入经过激活函数来输出传递到下一层.

以下是常见的激活函数:

  • sigmoid 激活函数

σ(x)=1/(1+e^x)

Pytorch学习笔记(五)--多层神经网络_第1张图片

  • tanh 激活函数

tanh(x)=2σ(2x)−1

Pytorch学习笔记(五)--多层神经网络_第2张图片

  • ReLU 激活函数

ReLU(x)=max(0,x)
Pytorch学习笔记(五)--多层神经网络_第3张图片
一般一个一层的神经网络的公式就是 y=max(0,wx+b) ,一个两层的神经网络就是 y=w2 max(0,w1x+b1)+b2 ,非常简单,但是却很有效,使用这个激活函数能够加快梯度下降法的收敛速度,同时对比与其他的激活函数,这个激活函数计算更加简单.

神经网络就是很多个神经元堆在一起形成一层神经网络,那么多个层堆叠在一起就是深层神经网络.每层神经元的个数和神经网络的层数都是可以调节的参数,会对网络产生大的影响

Pytorch学习笔记(五)--多层神经网络_第4张图片
例子:对比一层与多层网络
画出样本点

import torch
import numpy as np
from torch import nn
from torch.autograd import Variable
import torch.nn.functional as F

import matplotlib.pyplot as plt

def plot_decision_boundary(model, x, y):
    # Set min and max values and give it some padding
    x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(x[:, 0], x[:, 1], c=y.reshape(-1), s=40, cmap=plt.cm.Spectral)

np.random.seed(1)
m = 400 # 样本数量
N = int(m/2) # 每一类的点的个数
D = 2 # 维度
x = np.zeros((m, D))
y = np.zeros((m, 1), dtype='uint8') # label 向量,0 表示红色,1 表示蓝色
a = 4

for j in range(2):
    ix = range(N*j,N*(j+1))
    t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
    r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
    x[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
    y[ix] = j

plt.scatter(x[:, 0], x[:, 1], c=y.reshape(-1), s=40, cmap=plt.cm.Spectral)
# plt.show()

Pytorch学习笔记(五)--多层神经网络_第5张图片
采用logistic模型

x = torch.from_numpy(x).float()
y = torch.from_numpy(y).float()

w = nn.Parameter(torch.randn(2, 1))
b = nn.Parameter(torch.zeros(1))

optimizer = torch.optim.SGD([w, b], 1e-1)

def logistic_regression(x):
    return torch.mm(x, w) + b

criterion = nn.BCEWithLogitsLoss()

for e in range(100):
    out = logistic_regression(Variable(x))
    loss = criterion(out, Variable(y))
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (e + 1) % 20 == 0:
        print('epoch: {}, loss: {}'.format(e+1, loss.item()))


def plot_logistic(x):
    x = Variable(torch.from_numpy(x).float())
    out = F.sigmoid(logistic_regression(x))
    out = (out > 0.5) * 1
    return out.data.numpy()

plot_decision_boundary(lambda x: plot_logistic(x), x.numpy(), y.numpy())
plt.title('logistic regression')

plt.show()

Pytorch学习笔记(五)--多层神经网络_第6张图片
使用两层神经网络

x = torch.from_numpy(x).float()
y = torch.from_numpy(y).float()
# 定义两层神经网络的参数
w1 = nn.Parameter(torch.randn(2, 4) * 0.01) # 隐藏层神经元个数 2
b1 = nn.Parameter(torch.zeros(4))

w2 = nn.Parameter(torch.randn(4, 1) * 0.01)
b2 = nn.Parameter(torch.zeros(1))

# 定义模型
def two_network(x):
    x1 = torch.mm(x, w1) + b1
    x1 = F.tanh(x1) # 使用 PyTorch 自带的 tanh 激活函数
    x2 = torch.mm(x1, w2) + b2
    return x2

optimizer = torch.optim.SGD([w1, w2, b1, b2], 1.)

criterion = nn.BCEWithLogitsLoss()

# 我们训练 10000 次
for e in range(100):
    out = two_network(Variable(x))
    loss = criterion(out, Variable(y))
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (e + 1) % 1000 == 0:
        print('epoch: {}, loss: {}'.format(e+1, loss.item()))

def plot_network(x):
    x = Variable(torch.from_numpy(x).float())
    x1 = torch.mm(x, w1) + b1
    x1 = F.tanh(x1)
    x2 = torch.mm(x1, w2) + b2
    out = F.sigmoid(x2)
    out = (out > 0.5) * 1
    return out.data.numpy()

plot_decision_boundary(lambda x: plot_network(x), x.numpy(), y.numpy())
plt.title('2 layer network train 100')

plt.show()

Pytorch学习笔记(五)--多层神经网络_第7张图片
Pytorch学习笔记(五)--多层神经网络_第8张图片
Pytorch学习笔记(五)--多层神经网络_第9张图片

epoch: 1000, loss: 0.29067105054855347
epoch: 2000, loss: 0.2533509135246277
epoch: 3000, loss: 0.2366824746131897
epoch: 4000, loss: 0.229623943567276
epoch: 5000, loss: 0.2252798229455948
epoch: 6000, loss: 0.2221824824810028
epoch: 7000, loss: 0.21980053186416626
epoch: 8000, loss: 0.21788650751113892
epoch: 9000, loss: 0.21631284058094025
epoch: 10000, loss: 0.2150006741285324

二.Sequential 和 Module

未完待续......

你可能感兴趣的:(pytorch)