$ sudo pip install sk-video
import skvideo.io
import skvideo.datasets
import numpy as np
# read video as a single ndarray
videodata = skvideo.io.vread(skvideo.datasets.bigbuckbunny())
print(videodata.shape)
# read video frame by frame
videogen = skvideo.io.vreader(skvideo.datasets.bigbuckbunny())
for frame in videogen:
print(frame.shape)
# set keys and values for parameters in ffmpeg
inputparameters = {}
outputparameters = {}
reader = skvideo.io.FFmpegReader(skvideo.datasets.bigbuckbunny(),
inputdict=inputparameters,
outputdict=outputparameters)
# iterate through the frames
accumulation = 0
for frame in reader.nextFrame():
# do something with the ndarray frame
accumulation += np.sum(frame)
import skvideo.io
import skvideo.datasets
import numpy as np
# write an ndarray to a video file
outputdata = np.random.random(size=(30,480,680,3)) * 255
outputdata = outputdata.astype(np.uint8)
skvideo.io.vwrite("outputvideo.mp4", outputdata)
# FFmpeg writer (报错)
outputdats = np.random.random(size=(5,480,680,3)) * 255
outputdata = outputdata.astype(np.uint8)
writer = skvideo.io.FFmpegWriter("outputvideoplus.mp4",(5,480,640,3))
for i in xrange(5):
writer.writeFrame(outputdata[i,:,:,:])
writer.close()
ffmpeg写报错,
writer = skvideo.io.FFmpegWriter("outputvideoplus.mp4",(5,480,640,3))
,TypeError: 'tuple' object does not support item assignment
import skvideo.io
import skvideo.datasets
import json
metadata = skvideo.io.ffprobe(skvideo.datasets.bigbuckbunny())
print(metadata.keys())
print(json.dumps(metadata['video'], indent=4))
import skvideo.io
import skvideo.motion
import skvideo.datasets
videodata = skvideo.io.vread(skvideo.datasets.bigbuckbunny(),num_frames=5)
motion = skvideo.motion.blockMotion(videodata)
print(videodata.shape)
print(motion.shape)
# compensate the video
compensate = skvideo.motion.blockComp(videodata, motion)
# write
skvideo.io.vwrite("compensate.mp4", compensate)
import skvideo.io
import skvideo.motion
import skvideo.datasets
import skvideo.measure
# compute vectors from bigbuckbunny
videodata = skvideo.io.vread(skvideo.datasets.bigbuckbunny(),num_frames=5,as_grey=True)
# videodata = skvideo.io.vread(skvideo.datasets.bigbuckbunny())
# skvideo.io.vwrite("origin.mp4", videodata)
motion = skvideo.motion.blockMotion(videodata)
print(videodata.shape)
print(motion.shape)
# compensate the video
compensate = skvideo.motion.blockComp(videodata, motion)
# write
skvideo.io.vwrite("compensate.mp4", compensate)
print(skvideo.measure.ssim(videodata,compensate))
print(skvideo.measure.psnr(videodata,compensate))
print(skvideo.measure.mse(videodata,compensate))
import skvideo.io
# a frame from the bigbuckbunny sequence
vid = skvideo.io.vread('/home/shuai/python_test/output.png')
T, M, N, C = vid.shape
print("Number of frames: %d" % (T,))
print("Number of rows: %d" % (M,))
print("Number of cols: %d" % (N,))
print("Number of channels: %d" % (C,))
# upsacle by a factor of 2
vid = skvideo.io.vread('/home/shuai/python_test/output.png',
outputdict={
"-sws_flags":"bilinear",
"-s":"2560x1440"
})
T, M, N, C = vid.shape
print("Number of frames: %d" % (T,))
print("Number of rows: %d" % (M,))
print("Number of cols: %d" % (N,))
print("Number of channels: %d" % (C,))
skvideo.io.vwrite("outputplus.png", vid)