- 基于matlab的帧间差法进行视频目标检测系统
挂科边缘
MATLAB项目实战matlab人工智能计算机视觉
文章目录前言一、理论基础1.帧间差分法2.背景差分法3.光流法二、程序实现总结源码下载前言运动目标自动检测是对运动目标进行检测、提取、识别和跟踪的技术。基于视频序列的运动目标检测,一直以来都是机器视觉、智能监控系统、视频跟踪系统等领域的研究重点,是整个计算机视觉的研究难点之一。运动目标检测的结果正确性对后续的图像处理、图像理解等工作的顺利开展具有决定性的作用,所以能否将运动物体从视频序列中准确地检
- 计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)
全栈你个大西瓜
人工智能计算机视觉YOLO目标跟踪人工智能数据标注目标检测COCO
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- 【目标检测JP】番茄植株叶片病害数据集4280张8类病害YOLO+VOC(含增强)
不会仰游的河马君
数据集目标检测YOLO番茄叶片病害
【目标检测JP】番茄植株叶片病害数据集4280张8类病害YOLO+VOC(含增强)数据集格式:VOC格式+YOLO格式压缩包内含:3个文件夹,分别存储图片、xml、txt文件JPEGImages文件夹中jpg图片总计:4280Annotations文件夹中xml文件总计:4280labels文件夹中txt文件总计:4280标签种类数:8标签名称:["BacterialSpot","EarlyBli
- 基于 YOLO 进行车道线检测与目标检测算法研究及开发的一般步骤
pk_xz123456
python算法深度学习YOLO目标检测算法
基于深度学习的车道线检测与目标检测在自动驾驶等领域有着重要应用,使用YOLO(YouOnlyLookOnce)进行开发是一种常见且高效的方式。以下是关于基于YOLO进行车道线检测与目标检测算法研究及开发的一般步骤和相关内容:1.环境搭建首先确保你的开发环境安装了必要的软件和库,推荐使用Python语言,以下是一些关键库:PyTorch:YOLO通常基于PyTorch实现,安装适合你系统的PyTor
- 机器学习安全核心算法全景解析
金外飞176
网络空间安全机器学习安全算法
机器学习安全核心算法全景解析引言机器学习系统的脆弱性正成为安全攻防的新战场。从数据投毒到模型窃取,攻击者不断突破传统防御边界。本文系统性梳理ML安全关键技术图谱,重点解析12类核心算法及其防御价值。一、数据安全防护算法1.对抗样本防御算法名称核心思想2024年最新进展典型应用场景TRADES鲁棒性-准确性权衡优化Facebook提出自监督TRADES改进版自动驾驶目标检测JacobianSVD输入
- 动态视觉SLAM的亿点点思考(含20项最新开源代码链接)[上篇]
3D视觉工坊
3D视觉从入门到精通人工智能
作者:泡椒味的口香糖|来源:3D视觉工坊添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。0.笔者个人体会动态环境下的视觉SLAM一直都是研究的重点和难点,但最近动态SLAM的paper越来越少,感觉主要原因是动态SLAM的框架已经固化,很难做出大的创新。现有的模板基本就是使用目标检测或者语义分割网络剔除动态特征点,然后用几何一致性做进一步的验证。笔者最近也在思考突破口,
- [C++]使用纯opencv部署yolov12目标检测onnx模型
FL1623863129
深度学习c++opencvYOLO
yolov12官方框架:sunsmarterjie/yolov12【算法介绍】在C++中使用纯OpenCV部署YOLOv12进行目标检测是一项具有挑战性的任务,因为YOLOv12通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN
- 目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
紫雾凌寒
AI炼金厂#机器学习算法#深度学习深度学习计算机视觉python目标检测YOLOcnn人工智能
一、引言在计算机视觉领域中,目标检测是一项至关重要的任务,它旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。目标检测技术的应用广泛,涵盖了自动驾驶、安防监控、智能机器人、图像编辑等多个领域。随着深度学习技术的飞速发展,目标检测算法也取得了巨大的突破,从最初的R-CNN到如今的YOLOv11,每一次的技术演进都为该领域带来了新的活力和可能性。回顾目标检测的发展历程,R-CNN作为第一个将深度
- 图像配准的方法
wangtaohappy
迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择多图像中的一张图像作为参考图像,将其
- 高压输电线故障检测数据集 YOLO 格式
幽络源小助理
幽络源资料分享人工智能机器学习深度学习
数据集介绍高压输电线故障检测数据集是一个专为电力行业AI模型训练设计的高质量数据集,支持YOLO格式的方框标注,适用于目标检测任务。数据集特点图像数量:1912张高质量图像,涵盖多种场景和光照条件。标注类别:6个类别,包括正常高压线、故障高压线、正常绝缘子、故障绝缘子等。格式支持:支持YOLOv5、YOLOv8等多种YOLO格式,方便直接用于模型训练。数据划分:训练集(1794张)、验证集(77张
- YOLOv12:以注意力为中心的物体检测
那雨倾城
PiscTraceYOLO机器学习目标检测深度学习图像处理
YOLOv12是YOLO系列中的最新版本,它引入了一种以注意力为中心的架构,旨在进一步提升物体检测的精度和速度。相比以往的YOLO模型,YOLOv12摒弃了传统基于卷积神经网络(CNN)的结构,采用了全新的方法,融合了自注意力机制和高效的网络架构优化,提供了一个高精度、低延迟的实时目标检测模型。1.主要功能YOLOv12在多个关键点进行了优化和创新,以下是它的主要功能:1.1区域注意机制(Regi
- cap4:YoloV5的TensorRT部署指南(python版)
我是一个对称矩阵
TensorRT全流程部署指南YOLOpython人工智能TensorRT模型部署
《TensorRT全流程部署指南》专栏文章目录:《TensorRT全流程部署指南》专栏主页cap1:TensorRT介绍及CUDA环境安装cap2:1000分类的ResNet的TensorRT部署指南(python版)cap3:自定义数据集训练ResNet的TensorRT部署指南(python版)cap4:YoloV5目标检测任务的TensorRT部署指南(python版)cap5:YoloV5
- 在 Centos7 上部署 ASP.NET 8.0 + YOLOv11 的踩坑实录
桑榆肖物
ASP.NET运维asp.netYOLO后端
本文将详细记录我在CentOS7上部署ASP.NET8.0结合YOLOv11目标检测项目过程中遇到的问题及解决方案,旨在为有类似需求的开发者提供参考。1.背景随着人工智能技术的迅猛发展,目标检测成为了众多应用场景中的核心技术之一。YOLO(YouOnlyLookOnce)系列作为实时目标检测领域的代表,已经发展到了YOLOv11版本。同时,.NET平台也在不断迭代升级,最新版本已发布至.NET9。
- Deepseek在【python】三帧差法实现运动目标检测
百态老人
python目标检测目标跟踪
deepseek在【python】三帧差法实现运动目标检测一、三帧差法原理三帧差法是一种改进的帧差法,通过比较连续的三帧图像来检测运动目标。具体来说,它首先计算前两帧图像之间的差值,再计算后两帧图像之间的差值,最后将这两个差值图像进行“与”运算,以确定运动目标的变化部分。这种方法能够更好地消除“双影”现象,提高目标检测的准确性。二、实现步骤读取视频帧:使用OpenCV库读取视频序列中的连续三帧图像
- 【python】三帧差法实现运动目标检测
Jackilina_Stone
#python计算机视觉python运动目标检测OD
三帧差法是一种常用的运动目标检测方法,它通过比较连续三帧图像之间的差异来检测运动物体。这种方法尤其适用于背景变化较小的场景。目录1方案2实践①代码②效果图1方案具体步骤如下:①读取视频流:使用cv2.VideoCapture()读取视频文件。②灰度化:将彩色图像转换为灰度图,简化后续计算。③帧间差分:计算连续三帧之间的差分,absdiff函数计算两个灰度图像的绝对差值。然后,将两帧差相加。④阈值处
- YOLOv8与DAttention机制的融合:复杂场景下目标检测性能的增强
向哆哆
YOLO目标检测目标跟踪yolov8
文章目录1.YOLOv8简介2.DAttention(DAT)注意力机制概述2.1DAttention机制的工作原理3.YOLOv8与DAttention(DAT)的结合3.1引入DAT的动机3.2集成方法3.3代码实现4.实验与结果分析4.1实验设置4.2结果分析推理速度性能对比5.深度分析:DAttention在YOLOv8中的作用5.1DAttention的有效性5.2适用于小物体检测5.3
- 生成对抗网络(GAN):从概念到代码实践(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能GAN网络对抗学习手势识别生成器与鉴别器生成对抗网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- MTCNN 人脸检测技术揭秘:原理、实现与实战(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能MTCNN人脸检测卷积神经网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- 地平线 3D 目标检测 bev_sparse 参考算法 - V2.0
算法自动驾驶
该示例为参考算法,仅作为在征程6上模型部署的设计参考,非量产算法简介在自动驾驶视觉感知系统中,为了获得环绕车辆范围的感知结果,通常需要融合多摄像头的感知结果。目前更加主流的感知架构则是选择在特征层面进行多摄像头融合。其中比较有代表性的路线就是这两年很火的BEV方法,继TeslaOpenAIDay公布其BEV感知算法之后,相关研究层出不穷,感知效果取得了显著提升,BEV也几乎成为了多传感器特征融合的
- 基于Roboflow平台的数据集导出与YOLOv8目标检测训练实战
步入烟尘
YOLO系列创新涨点超专栏YOLO目标检测人工智能RoboflowYOLOv8
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录基于Roboflow平台的数据集导出与YOLOv8目标检测训练实战1.什么是Roboflow?2.创
- RK3588 Linux板端推理时报错Segmentation fault解决办法
kennyooooo
linux目标检测yolo嵌入式硬件
目录问题解决生成core文件修改core文件存储路径Ubuntu20.04下的异常状况利用core文件进行调试问题最近在使用rk3588跑官方提供的yolov5模型demo,能够完成单张图片的目标检测,但是在运行视频流demo时,系统报错:segmentationfault(coredumped)此时没有再给出更多的报错信息,不太好debug,在网上阅读了一些博客现在整理一下。解决在Linux下遇
- 人工智能训练师如何做图像数据标注,从情感分析和实体分析两个个场景分析
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,图像情感分析和图像实体分析是两个重要的应用场景。高质量的图像数据标注对于训练情感识别模型和目标检测/语义分割模型至关重要。本指南将详细介绍:情感分析标注(EmotionAnalysis)实体分析标注(EntityRecognition)自动化标注工具Python代码示例数据格式与存储标注数据质量评估1.情感分析(EmotionAnalysis)标注1.1情感分析简介图像情感分析(
- 2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)
emmm形成中
pythonopencvYOLO
2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)摘要:本文基于OpenCV与YOLOv8模型,实现实时目标检测与跟踪功能,支持多类别目标识别与运动轨迹绘制。代码兼容Python3.7+,步骤清晰且经过稳定性测试,适合中高级开发者参考。所有依赖库均为最新版本,确保运行流畅。一、环境准备安装依赖库pipinstallopencv-python==4
- 消融实验(Ablation Study):模型优化的关键分析方法
烟锁池塘柳0
深度学习人工智能计算机视觉深度学习
文章目录消融实验(AblationStudy):模型优化的关键分析方法什么是消融实验?为什么要做消融实验?实验步骤典型实验案例案例1:图像分类模型案例2:目标检测模型实验结果解读要点消融实验的意义总结消融实验(AblationStudy):模型优化的关键分析方法什么是消融实验?消融实验(AblationStudy)是机器学习领域用于评估模型组件有效性的重要研究方法。通过逐步移除模型的某些模块/特征
- 计算机视觉与深度学习实战:以Python为工具,基于帧间差法进行视频目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于帧间差法进行视频目标检测
一、引言随着科技的飞速发展,计算机视觉和深度学习已成为当今科技领域的热门话题。它们不仅在科研领域取得了显著的成果,而且在安防监控、智能交通、医疗影像分析、工业自动化等领域得到了广泛的应用。本文旨在探讨计算机视觉与深度学习的实战应用,特别是以Python为工具,基于帧间差法进行视频目标检测的方法。二、计算机视觉概述计算机视觉是一门研究如何使机器从数字图像或视频中提取、分析和理解有用信息的学科。它涉及
- YOLOv11快速上手:如何在本地使用TorchServe部署目标检测模型
SYC_MORE
YOLOv11系列教程:模型训练优化与部署全攻略TorchServeYOLOv11教程模型部署与推理TorchServe应用目标检测模型训练YOLO模型导出
引言YOLOv11是最新的目标检测模型,以其高效和准确著称,广泛应用于图像分割、姿态估计等任务。本文将详细介绍如何使用YOLOv11训练你的第一个目标检测模型,并通过TorchServe在本地进行部署,实现模型的快速推理。环境准备在开始之前,确保你的开发环境满足以下要求:Python版本:3.8或以上PyTorch:1.9或以上CUDA:如果使用GPU,加速训练和推理TorchServe:用于模型
- ssd训练自己的数据集
reset2021
目标检测目标检测python深度学习人工智能pytorch
基于SSD算法实现对自己数据集的训练与检测。(该专题以操作为主)SSD是一种非常优秀的one-stage目标检测方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是利用CNN提取特征后,均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,物体分类与预测框的回归同时进行,整个过程只需要一步,所以其优势是速度快。这篇文档主要讲述怎样用SSD算法来实现对自己数据集的训
- YOLOv8与BiFormer注意力机制的融合:提升多场景目标检测性能的研究
向哆哆
YOLO目标检测目标跟踪yolov8
文章目录保姆级YOLOv8改进:适用于多种检测场景的BiFormer注意力机制(Bi-levelRoutingAttention)1.YOLOv8的改进背景2.BiFormer注意力机制的核心原理2.1Bi-levelAttention结构2.2路由策略与加权融合3.YOLOv8与BiFormer的结合3.1YOLOv8架构概述3.2BiFormer与YOLOv8的融合策略4.实现代码示例5.结果
- 图像检测分析难题?三维天地引入YOLO目标检测技术带来全新解决方案!
资讯分享周
YOLO目标检测人工智能
在当今的检验检测认证行业,利用图像检测技术分析样本的相关指标已经成为众多检验检测领域的重要需求。无论是医学影像诊断、材料科学、食品检测还是质量控制,都依赖于精确的图像分析来提高检测的效率和准确性。然而,传统的图像处理方法面临着诸多挑战,如庞大的数据量、复杂的特征提取、漫长的模型训练周期以及复杂的公式计算等。这些问题不仅限制了检测的效率,还对结果的准确性产生了负面影响。一、实际业务操作中的工作难点1
- 25/2/16 <算法笔记> DirectPose
青椒大仙KI11
视觉计算机视觉
DirectPose是一种直接从图像中预测物体的6DoF(位姿:6DegreesofFreedom)姿态的方法,包括平移和平面旋转。它在目标检测、机器人视觉、增强现实(AR)和自动驾驶等领域中具有广泛应用。相比于传统的位姿估计方法,DirectPose试图简化复杂的处理流程,采用端到端的方式直接从图像中输出位姿参数。1.DirectPose是什么?DirectPose是一种端到端的神经网络方法,旨
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s