Redis的配置文件

Redis的配置在redis的安装目录下的redis.conf中,如下所示

使用命令cat redis.conf 进行查看,vi redis.conf 或者vim redis.conf进行编辑

文件内容如下:

# Redis configuration file example.
# Redis配置
#
# Note that in order to read the configuration file, Redis must be
# started with the file path as first arguiment:
# 为了读取这个配置文件,Redis启动时必须使用这个文件的路径
#
# ./redis-server /path/to/redis.conf

# Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
# 单位说明:当需要内存大小时,可以用1K 5GB 4M等常用格式指定:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.
# 单位是不区分大小写的,所以1GB 1Gb 1gB都是相同的。

################################## INCLUDES ###################################

# Include one or more other config files here.  This is useful if you
# have a standard template that goes to all Redis servers but also need
# to customize a few per-server settings.  Include files can include
# other files, so use this wisely.
# 在这里包含一个或多个其他配置文件。如果您有一个标准模板,该模板可用于所有Redis服务器,但还需要自
# 定义每个服务器的一些设置,则此模板非常有用。因为这个文件可以包括其他文件,因此你可以灵活地使用
# 它。
#
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
# from admin or Redis Sentinel. Since Redis always uses the last processed
# line as value of a configuration directive, you'd better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
# 注意:“include”不会被来自admin或redis sentinel的命令“config rewrite”重写。因为redis总是使用
# 最后处理的行作为配置指令的值,所以最好将include放在该文件的开头,以避免在运行时覆盖配置更改。
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
# 如果您对使用include覆盖配置选项感兴趣,最好使用include作为最后一行。
#
# include /path/to/local.conf
# include /path/to/other.conf

################################## MODULES #####################################

# Load modules at startup. If the server is not able to load modules
# it will abort. It is possible to use multiple loadmodule directives.
# 启动时加载模块。如果服务器无法加载模块,它将中止。可以使用多个加载模块指令。
#
# loadmodule /path/to/my_module.so
# loadmodule /path/to/other_module.so

################################## NETWORK #####################################

# By default, if no "bind" configuration directive is specified, Redis listens
# for connections from all the network interfaces available on the server.
# It is possible to listen to just one or multiple selected interfaces using
# the "bind" configuration directive, followed by one or more IP addresses.
# 默认情况下,如果未指定“bind”配置指令,redis将侦听服务器上所有可用网络接口的连接。可以使
# 用“bind”配置指令只侦听一个或多个选定的接口,后跟一个或多个IP地址。
#
# Examples:
#
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1 ::1
#
# ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the
# internet, binding to all the interfaces is dangerous and will expose the
# instance to everybody on the internet. So by default we uncomment the
# following bind directive, that will force Redis to listen only into
# the IPv4 loopback interface address (this means Redis will be able to
# accept connections only from clients running into the same computer it
# is running).
# 如果运行redis的计算机直接暴露在Internet上,绑定到所有接口是危险的,并且会将实例暴露给Internet
# 上的每个人。因此,默认情况下,我们取消对以下绑定指令的注释,这将强制redis只侦听ipv4环回接口地址
# (这意味着redis只能接受运行在同一台计算机上的客户端的连接)
#
# IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES
# JUST COMMENT THE FOLLOWING LINE.
# 如果您确定要让您的实例监听所有接口,只需注释下面的行即可。
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
bind 127.0.0.1

# Protected mode is a layer of security protection, in order to avoid that
# Redis instances left open on the internet are accessed and exploited.
#
# When protected mode is on and if:
#
# 1) The server is not binding explicitly to a set of addresses using the
#    "bind" directive.
# 2) No password is configured.
#
# The server only accepts connections from clients connecting from the
# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain
# sockets.
#
# By default protected mode is enabled. You should disable it only if
# you are sure you want clients from other hosts to connect to Redis
# even if no authentication is configured, nor a specific set of interfaces
# are explicitly listed using the "bind" directive.
# 保护模式是一个为了避免在Internet上打开的Redis实例被访问和利用的安全保护。
# 当保护模式打开时,如果:
# 1)服务器没有使用“bind”指令显式绑定到一组地址。
# 2)未配置密码。
# 服务器只接受来自从IPv4和IPv6环回地址127.0.0.1和::1连接的客户端以及来自Unix域套接字的连接。
# 默认情况下启用保护模式。只有当您确定希望来自其他主机的客户机连接到Redis时,您才应该禁用它,即使
# 没有配置身份验证,也没有使用“bind”指令显式列出特定的接口集。
protected-mode yes

# Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Redis will not listen on a TCP socket.
# 接受指定端口上的连接,默认值为6379(IANA 815344)。如果指定了端口0,Redis将不会在TCP套接字上
# 侦听。
port 6379

# TCP listen() backlog.
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues. Note that the Linux kernel
# will silently truncate it to the value of /proc/sys/net/core/somaxconn so
# make sure to raise both the value of somaxconn and tcp_max_syn_backlog
# in order to get the desired effect.
# 在每秒高请求数的环境中,为了避免客户机连接速度慢的问题,您需要大量积压工作。请注意,Linux内核将
# 自动将其截断为/proc/sys/net/core/somaxconn的值,因此请确保同时提高somaxconn和
#tcp-max-syn-backlog的值,以获得所需的效果。
tcp-backlog 511

# Unix socket.
#
# Specify the path for the Unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
# 指定将用于侦听传入连接的Unix套接字的路径。没有默认值,因此未指定时,redis不会在UNIX套接字上侦
# 听。
#
# unixsocket /tmp/redis.sock
# unixsocketperm 700

# Close the connection after a client is idle for N seconds (0 to disable)
# 客户端空闲N秒后关闭连接(0禁用)
timeout 0

# TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
#    equipment in the middle.
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
#
# A reasonable value for this option is 300 seconds, which is the new
# Redis default starting with Redis 3.2.1.
# 如果非零,则使用so-keepalive在没有通信的情况下向客户机发送TCP ACK。这有两个原因:
# 1)检测死点。
# 2)从中间网络设备的角度,将连接激活。
# 在Linux上,指定的值(以秒为单位)是用于发送ACK的周期。请注意,要关闭连接,需要双倍的时间。对于
# 其他内核,周期取决于内核配置。
# 此选项的合理值为300秒,这个新的Redis默认值是从Redis 3.2.1开始的。
tcp-keepalive 300

################################# GENERAL #####################################

# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
# 默认情况下,redis不作为守护进程运行。如果需要,请设置“yes”。注意,redis会在后台监控时
# 在/var/run/redis.pid中写入一个pid文件。
daemonize no

# If you run Redis from upstart or systemd, Redis can interact with your
# supervision tree. Options:
#   supervised no      - no supervision interaction
#   supervised upstart - signal upstart by putting Redis into SIGSTOP mode
#   supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET
#   supervised auto    - detect upstart or systemd method based on
#                        UPSTART_JOB or NOTIFY_SOCKET environment variables
# Note: these supervision methods only signal "process is ready."
#       They do not enable continuous liveness pings back to your supervisor.
# 可以通过upstart和systemd管理Redis守护进程选项:
#  supervised no - 没有监督互动
#  supervised upstart - 通过将Redis置于SIGSTOP模式来启动信号
#  supervised systemd - signal systemd将READY = 1写入$ NOTIFY_SOCKET
#  supervised auto - 检测upstart或systemd方法基于 UPSTART_JOB或NOTIFY_SOCKET环境变量
# 注意:这些监督方法只会发出“过程准备就绪”的信号。它们不能持续向监督者发送心跳。
supervised no

# If a pid file is specified, Redis writes it where specified at startup
# and removes it at exit.
# 如果指定了PID文件,redis会将其写入启动时指定的位置,并在退出时将其删除
#
# When the server runs non daemonized, no pid file is created if none is
# specified in the configuration. When the server is daemonized, the pid file
# is used even if not specified, defaulting to "/var/run/redis.pid".
# 当服务器运行非守护进程时,如果配置中未指定任何PID文件,则不会创建任何PID文件。当服务器被监控
# 时,即使没有指定PID文件,也会使用它,默认为“/var/run/redis.pid”。
#
# Creating a pid file is best effort: if Redis is not able to create it
# nothing bad happens, the server will start and run normally.
# 创建一个pid文件是最好的。如果redis不创建它,在没有坏事发生的情况下,服务器也能够正常启动和运
# 行。
pidfile /var/run/redis_6379.pid

# Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
# 指定服务器详细级别。
# 这可以是以下之一:
# 调试(大量信息,对开发/测试有用)
# 详细(许多很少有用的信息,但不像调试级别那样混乱)
# 通知(适度详细,在生产中可能需要的信息)
# 警告(只记录非常重要/关键的消息)
loglevel notice

# Specify the log file name. Also the empty string can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
# 指定日志文件名。空字符串还可以用于强制redis登录标准输出。请注意,如果使用标准输出进行日志记录,
# 但使用后台监控,则日志将发送到/dev/null(空设备,即不记录日志)
logfile ""

# To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# 启用系统日志记录程序的日志记录,只需将“syslog-enabled”设置为“Yes”,并可以根据需要更新其他
# syslog参数。
# syslog-enabled no

# Specify the syslog identity.
# 指定系统日志标识。
# syslog-ident redis

# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# 指定系统日志功能。必须是用户或介于LOCAL0-LOCAL7之间.
# syslog-facility local0

# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT  where
# dbid is a number between 0 and 'databases'-1
# 设置数据库数。默认数据库为db 0,您可以使用select在每个连接基础上选择不同的数据库,其中
# dbid是介于0和“databases”-1之间的数字。
databases 16

# By default Redis shows an ASCII art logo only when started to log to the
# standard output and if the standard output is a TTY. Basically this means
# that normally a logo is displayed only in interactive sessions.
# 默认情况下,仅在开始记录到标准输出以及标准输出是TTY时,redis显示一个ascii art的标识。基本上意味
# 着一个标识通常只在交互式会话中显示。
#
# However it is possible to force the pre-4.0 behavior and always show a
# ASCII art logo in startup logs by setting the following option to yes.
# 但是,通过将以下选项设置为“yes”,可以强制4.0之前的行为并始终在启动日志中显示ASCII ART标识。
always-show-logo yes

################################ SNAPSHOTTING  ################################
#
# Save the DB on disk:
# 
#   save  
# 将数据库保存到磁盘使用save命令, 格式为save 秒数 改变数
#
#   Will save the DB if both the given number of seconds and the given
#   number of write operations against the DB occurred.
# 如果给定的秒数和给定的对数据库的写入操作数都达到,将保存数据库。
#
#   In the example below the behaviour will be to save:
#   after 900 sec (15 min) if at least 1 key changed
#   after 300 sec (5 min) if at least 10 keys changed
#   after 60 sec if at least 10000 keys changed
#   在下面的示例中,行为将保存:
#   900秒(15分钟)后,如果至少更改了一个键
#   300秒(5分钟)后,如果至少更改了10个键
#   60秒后,如果至少10000个键发生了变化
#
#   Note: you can disable saving completely by commenting out all "save" lines.
#   注意:您可以通过注释掉所有“保存”行来完全禁用保存。
#
#   It is also possible to remove all the previously configured save
#   points by adding a save directive with a single empty string argument
#   like in the following example:
#   还可以通过添加一个带有单个空字符串参数的save指令来删除以前配置的所有保存点,如下例所示:
#
#   save ""

save 900 1
save 300 10
save 60 10000

# By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
# 默认情况下,如果启用了RDB快照(至少一个保存点),当最新的后台保存失败时,Redis将停止接受写操
# 作。这将(以一种强硬的方式)使用户意识到数据没有正确地保存在磁盘上,否则很可能没有人会注意到,
# 进而发生一些灾难。
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
# 如果后台保存过程再次开始工作,Redis将自动允许再次写入。
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
# 但是,如果你已经对redis服务器设置了持久性的监视,则可能需要禁用此功能,以便redis可以继续正常工
# 作,即使磁盘、权限等存在问题。
stop-writes-on-bgsave-error yes

# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
# 在转储.rdb数据库时使用lzf压缩字符串对象?默认设置为“yes”,因为这几乎总是正确的。如果要在保存子
# 级中保存一些CPU,请将其设置为“no”,但如果具有可压缩的值或键,则数据集可能会更大。
rdbcompression yes

# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
# 由于RDB的版本5,CRC64校验和被放置在文件的末尾。这使得格式更容易被破坏,但是在保存和加载RDB文件
# 时,性能会受到影响(大约10%),因此您可以禁用它以获得最佳性能。
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
# 禁用校验和创建的RDB文件的校验和为零,它将告诉加载代码跳过检查.
rdbchecksum yes

# The filename where to dump the DB
# 转储数据库的文件名
dbfilename dump.rdb

# The working directory.
# 工作目录.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
# 数据库将使用上面指定的文件名,使用'db filename'配置指令写入此目录。
#
# The Append Only File will also be created inside this directory.
# 追加的文件也将在此目录中创建。
#
# Note that you must specify a directory here, not a file name.
# 请注意,必须在此处指定目录,而不是文件名。
dir ./

################################# REPLICATION #################################

# Master-Replica replication. Use replicaof to make a Redis instance a copy of
# another Redis server. A few things to understand ASAP about Redis replication.
#
#   +------------------+      +---------------+
#   |      Master      | ---> |    Replica    |
#   | (receive writes) |      |  (exact copy) |
#   +------------------+      +---------------+
#
# 1) Redis replication is asynchronous, but you can configure a master to
#    stop accepting writes if it appears to be not connected with at least
#    a given number of replicas.
# 2) Redis replicas are able to perform a partial resynchronization with the
#    master if the replication link is lost for a relatively small amount of
#    time. You may want to configure the replication backlog size (see the next
#    sections of this file) with a sensible value depending on your needs.
# 3) Replication is automatic and does not need user intervention. After a
#    network partition replicas automatically try to reconnect to masters
#    and resynchronize with them.
#
# 主从复制。使用replicoaf将redis实例制作为另一个redis服务器的从机。关于redis复制的一些需要尽
# 快理解的事情。
# 1)redis复制是异步的,但是您可以配置一个主机,使其在看起来至少与给定数量的从机没有连接时停止接
# 受写操作。
# 2)如果复制链路丢失的时间相对较短,Redis从机可以与主机进行部分再同步。根据需要,您可能需要使用
# 合理的值配置复制积压工作的大小(请参阅此文件的下一节)。
# 3)复制是自动的,不需要用户干预。从机会自动尝试重新连接到主机,并与主机重新同步之后,在网络分区
# 复制。
# replicaof  

# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the replica to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the replica request.
# 如果主机受密码保护(使用下面的“RequirePass”配置指令),则可以在启动复制同步过程之前通知从机进
# 行身份验证,否则主机将拒绝从机请求。
#
# masterauth 

# When a replica loses its connection with the master, or when the replication
# is still in progress, the replica can act in two different ways:
# 当从机失去与主机的连接或复制仍在进行时,从机可以以两种不同的方式进行操作:
#
# 1) if replica-serve-stale-data is set to 'yes' (the default) the replica will
#    still reply to client requests, possibly with out of date data, or the
#    data set may just be empty if this is the first synchronization.
# 1)如果replica-serve-stale-data设置为“yes”(默认值),则从机仍将答复客户端请求,可能数据
# 已过期,或者如果这是第一次同步,则数据集可能为空。
#
# 2) if replica-serve-stale-data is set to 'no' the replica will reply with
#    an error "SYNC with master in progress" to all the kind of commands
#    but to INFO, replicaOF, AUTH, PING, SHUTDOWN, REPLCONF, ROLE, CONFIG,
#    SUBSCRIBE, UNSUBSCRIBE, PSUBSCRIBE, PUNSUBSCRIBE, PUBLISH, PUBSUB,
#    COMMAND, POST, HOST: and LATENCY.
# 2) 如果replica-serve-stale-data设置为“no”,则从机除了INFO, replicaOF, AUTH, PING, 
# SHUTDOWN, REPLCONF, ROLE, CONFIG,SUBSCRIBE, UNSUBSCRIBE, PSUBSCRIBE, PUNSUBSCRIBE, 
# PUBLISH, PUBSUB, COMMAND, POST, HOST: and LATENCY以外,都将以错误“与正在进行的主机同步”答
# 复所有类型的命令
replica-serve-stale-data yes

# You can configure a replica instance to accept writes or not. Writing against
# a replica instance may be useful to store some ephemeral data (because data
# written on a replica will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
# 您可以将从机实例配置为接受写操作或不接受写操作。对从机实例进行写入可能有助于存储一些临时数据
# (因为在与主机重新同步后,从机上写入的数据很容易被删除),但如果客户端由于配置错误而向其写
# 入数据,则也可能导致问题。
#
# Since Redis 2.6 by default replicas are read-only.
# redis 2.6默认情况下是只读的。
#
# Note: read only replicas are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only replica exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only replicas using 'rename-command' to shadow all the
# administrative / dangerous commands.
# 注意:只读从机的设计不允许暴露于Internet上不受信任的客户端。它只是一个防止误用实例的保护机制。
# 默认情况下,只读从机仍会导出所有管理命令,如config、debug等。在一定程度上,您可以使用“rename-
# command”隐藏所有管理/危险命令来提高只读从机的安全性。
replica-read-only yes

# Replication SYNC strategy: disk or socket.
# 复制同步策略:磁盘或套接字。
#
# -------------------------------------------------------
# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
# -------------------------------------------------------
#
# New replicas and reconnecting replicas that are not able to continue the replication
# process just receiving differences, need to do what is called a "full
# synchronization". An RDB file is transmitted from the master to the replicas.
# The transmission can happen in two different ways:
# 新的从机和重新连接的从机无法继续仅接收差异的复制过程,需要执行所谓的“完全同步”。RDB文件
# 从主机传输到从机。传输有两种不同的方式:
#
# 1) Disk-backed: The Redis master creates a new process that writes the RDB
#                 file on disk. Later the file is transferred by the parent
#                 process to the replicas incrementally.
# 2) Diskless: The Redis master creates a new process that directly writes the
#              RDB file to replica sockets, without touching the disk at all.
# 1)磁盘备份:redis主机创建一个新进程,将RDB文件写入磁盘。稍后,父进程将文件增量传输到从机。
# 2)无磁盘:redis主机创建了一个新的进程,直接将RDB文件写入从机套接字,而根本不接触磁盘。
#
# With disk-backed replication, while the RDB file is generated, more replicas
# can be queued and served with the RDB file as soon as the current child producing
# the RDB file finishes its work. With diskless replication instead once
# the transfer starts, new replicas arriving will be queued and a new transfer
# will start when the current one terminates.
# 使用磁盘备份复制,在生成RDB文件的同时,可以在生成RDB文件的当前子级完成工作后,将更多从机排队并
# 与RDB文件一起提供服务。在无盘复制中,一旦传输开始,到达的新从机将排队,当当前从机终止时,将开始
# 新的传输。
#
# When diskless replication is used, the master waits a configurable amount of
# time (in seconds) before starting the transfer in the hope that multiple replicas
# will arrive and the transfer can be parallelized.
# 当使用无盘复制时,主机会在开始传输之前等待一段可配置的时间(以秒为单位),以希望多个从机能够到
# 达,并且可以并行传输。
#
# With slow disks and fast (large bandwidth) networks, diskless replication
# works better.
# 使用低速磁盘和快速(大带宽)网络,无盘复制工作得更好。
repl-diskless-sync no

# When diskless replication is enabled, it is possible to configure the delay
# the server waits in order to spawn the child that transfers the RDB via socket
# to the replicas.
# 当启用无盘复制时,可以配置服务器等待的延迟,以便生成通过套接字将RDB传输到从机的子级。
#
# This is important since once the transfer starts, it is not possible to serve
# new replicas arriving, that will be queued for the next RDB transfer, so the server
# waits a delay in order to let more replicas arrive.
# 这一点很重要,因为一旦传输开始,就不可能为到达的新从机提供服务,这些从机将排队等待下一次RDB传
# 输,因此服务器将等待一段延迟,以便让更多从机到达。
#
# The delay is specified in seconds, and by default is 5 seconds. To disable
# it entirely just set it to 0 seconds and the transfer will start ASAP.
# 延迟以秒为单位,默认为5秒。要完全禁用它,只需将其设置为0秒,传输将尽快开始。
repl-diskless-sync-delay 5

# Replicas send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_replica_period option. The default value is 10
# seconds.
# 从机以预先定义的间隔向服务器发送ping。可以使用repl-ping-u replica-period选项更改此间隔。默认
# 值为10秒。
#
# repl-ping-replica-period 10

# The following option sets the replication timeout for:
# 以下选项设置复制超时:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of replica.
# 2) Master timeout from the point of view of replicas (data, pings).
# 3) Replica timeout from the point of view of masters (REPLCONF ACK pings).
# 1)从从机的角度看,同步期间的批量传输I/O。
# 2)从从机的角度来看,主机超时(数据、ping)。
# 3)从主机的角度来看,复制超时(回复确认ping)。
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-replica-period otherwise a timeout will be detected
# every time there is low traffic between the master and the replica.
# 必须确保该值大于为repl-ping-replica-period指定的值,否则每次主机和从机之间的通信量低时都
# 会检测到超时。
#
# repl-timeout 60

# Disable TCP_NODELAY on the replica socket after SYNC?
# 同步后在从机套接字上禁用TCP节点?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to replicas. But this can add a delay for
# the data to appear on the replica side, up to 40 milliseconds with
# Linux kernels using a default configuration.
# 如果选择“yes”,Redis将使用较少的TCP数据包和较少的带宽向从机发送数据。但这可能会增加数据在从机
# 端出现的延迟,对于使用默认配置的Linux内核,延迟最长可达40毫秒。
#
# If you select "no" the delay for data to appear on the replica side will
# be reduced but more bandwidth will be used for replication.
# 如果选择“no”,将减少数据出现在从机端的延迟,但将使用更多带宽进行复制
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and replicas are many hops away, turning this to "yes" may
# be a good idea.
# 默认情况下,我们会针对低延迟进行优化,但在非常高的流量条件下,或者当主机和从机距离很多跃点时,
# 将其转换为“yes”可能是一个好主意。
repl-disable-tcp-nodelay no

# Set the replication backlog size. The backlog is a buffer that accumulates
# replica data when replicas are disconnected for some time, so that when a replica
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the replica missed while
# disconnected.
# 设置复制积压量大小。backlog是一个缓冲区,当从机断开连接一段时间后,它会累积复制数据,因此当从机
# 希望再次重新连接时,通常不需要完全重新同步,但部分重新同步就足够了,只需传递断开连接时从机丢失
# 的数据部分。
#
# The bigger the replication backlog, the longer the time the replica can be
# disconnected and later be able to perform a partial resynchronization.
# 复制积压量越大,从机断开连接的时间越长,执行部分重新同步时间更长。
#
# The backlog is only allocated once there is at least a replica connected.
# 只有在至少连接了一个从机后,才会分配积压工作.
#
# repl-backlog-size 1mb

# After a master has no longer connected replicas for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last replica disconnected, for
# the backlog buffer to be freed.
# 在主机一段时间内不再连接从机之后,将释放积压工作。下面的选项配置从最后一个从机断开连接开始,要
# 释放积压缓冲区所需的秒数。
#
# Note that replicas never free the backlog for timeout, since they may be
# promoted to masters later, and should be able to correctly "partially
# resynchronize" with the replicas: hence they should always accumulate backlog.
# 请注意,从机永远不会在超时时释放积压工作,因为它们稍后可能会提升为主机,并且应该能够与从机正确
# 地“部分重新同步”:因此,它们应该始终累积积压工作。
#
# A value of 0 means to never release the backlog.
# 值为0表示永不释放积压工作。
#
# repl-backlog-ttl 3600

# The replica priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a replica to promote into a
# master if the master is no longer working correctly.
# 从机优先级是redis在信息输出中发布的整数。Redis哨兵使用它来选择一个从机,以便在主机不再正常
# 工作时,它能升级为主机。
#
# A replica with a low priority number is considered better for promotion, so
# for instance if there are three replicas with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
# 低优先级数的从机被认为更适合升级,例如,如果有三个优先级为10、100、25的从机,哨兵将选择优先级为
# 10的从机,即优先级最低的从机。
#
# However a special priority of 0 marks the replica as not able to perform the
# role of master, so a replica with priority of 0 will never be selected by
# Redis Sentinel for promotion.
# 但是,特殊优先级0将从机标记为无法执行master角色,因此redis哨兵将永远不会选择优先级为0的从机
# 进行升级.
#
# By default the priority is 100.
# 默认情况下,优先级为100。
replica-priority 100

# It is possible for a master to stop accepting writes if there are less than
# N replicas connected, having a lag less or equal than M seconds.
# 如果连接的从机少于n个,且延迟小于或等于m秒,则主机可以停止接受写入。
#
# The N replicas need to be in "online" state.
# n个从机需要处于“联机”状态。
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the replica, that is usually sent every second.
# 以秒为单位的延迟(必须小于等于指定值)是从从机接收的最后一次ping计算出来的,通常每秒发送一次。
#
# This option does not GUARANTEE that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough replicas
# are available, to the specified number of seconds.
# 此选项不保证n个从机接受写入,但会将丢失写入的暴露时间限制在指定的秒数内,以防没有足够的从机可
# 用。
#
# For example to require at least 3 replicas with a lag <= 10 seconds use:
# 例如,要求至少3个延迟<=10秒的从机,请使用:
#
# min-replicas-to-write 3
# min-replicas-max-lag 10
#
# Setting one or the other to 0 disables the feature.
# 将一个或另一个设置为0将禁用该功能。
#
# By default min-replicas-to-write is set to 0 (feature disabled) and
# min-replicas-max-lag is set to 10.
# 默认情况下,min-replicas-to-write设置为0(禁用功能),min-replicas-max-lag设置为10。

# A Redis master is able to list the address and port of the attached
# replicas in different ways. For example the "INFO replication" section
# offers this information, which is used, among other tools, by
# Redis Sentinel in order to discover replica instances.
# Another place where this info is available is in the output of the
# "ROLE" command of a master.
# redis主机可以以不同的方式列出附加从机的地址和端口。例如,“信息复制”部分提供了这些信息,Redis 
# 哨兵使用这些信息以及其他工具来发现从机实例。另一个可以获得此信息的地方是master的“role”命令的输
# 出。
#
# The listed IP and address normally reported by a replica is obtained
# in the following way:
# 正常的从机报告列出的IP和地址是通过以下方式获得的:
#
#   IP: The address is auto detected by checking the peer address
#   of the socket used by the replica to connect with the master.
#   IP:通过检查从机用于连接主机的套接字的对等地址,自动检测该地址。
#
#   Port: The port is communicated by the replica during the replication
#   handshake, and is normally the port that the replica is using to
#   listen for connections.
#   端口:在复制握手过程中,该端口由从机进行通信,通常是从机用来侦听连接的端口。
#
# However when port forwarding or Network Address Translation (NAT) is
# used, the replica may be actually reachable via different IP and port
# pairs. The following two options can be used by a replica in order to
# report to its master a specific set of IP and port, so that both INFO
# and ROLE will report those values.
# 但是,当使用端口转发或网络地址转换(NAT)时,从机实际上可以通过不同的IP和端口对访问。从机可以使
# 用以下两个选项向其主机报告一组特定的IP和端口,以便信息和角色都报告这些值。
#
# There is no need to use both the options if you need to override just
# the port or the IP address.
# 如果只需要覆盖端口或IP地址,则不需要同时使用这两个选项。
#
# replica-announce-ip 5.5.5.5
# replica-announce-port 1234

################################## SECURITY ###################################

# Require clients to issue AUTH  before processing any other
# commands.  This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
# 要求客户端在处理任何其他命令之前发出auth。在您不信任其他人访问运行redis服务器的主机
# 的环境中,这可能很有用。
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
# 由于向后兼容性和大多数人不需要身份验证(例如,他们运行自己的服务器),这应该保持在注释之外。
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
# 警告:由于Redis速度非常快,外部用户可以在每秒尝试多达150k个密码。这意味着您应该使用一个非常强的
# 密码,否则很容易破解。
#
# requirepass foobared

# Command renaming.
# 命令重命名
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
# 可以在共享环境中更改危险命令的名称。例如,可以将config命令重命名为一些难以猜测的内容,以便它仍
# 然可以用于内部使用工具,但不能用于一般客户机。
#
# Example:
# 比如:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
# 也可以通过将命令重命名为空字符串来完全终止命令:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to replicas may cause problems.
# 请注意,更改登录到AOF文件或传输到从机的命令的名称可能会导致问题。


################################### CLIENTS ####################################

# Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
# 同时设置最大连接客户端数。默认情况下,此限制设置为10000个客户端,但是,如果Redis服务器无法将进
# 程文件限制配置为允许指定限制,则允许的最大客户端数设置为当前文件限制减去32(因为Redis保留一些文
# 件描述符供内部使用)。
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
# 达到限制后,Redis将关闭所有发送“已达到最大客户端数”错误的新连接。
#
# maxclients 10000

############################## MEMORY MANAGEMENT ################################

# Set a memory usage limit to the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
# 将内存使用限制设置为指定的字节数。当达到内存限制时,Redis将根据所选的删除策略尝试删除键(请参
# 阅MaxMemory策略)。
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
# 如果redis无法根据策略删除键,或者策略设置为“noevicetion”,redis将开始对使用更多内存的命令
#(如set、lpush等)进行错误回复,并将继续回复get等只读命令。
#
# This option is usually useful when using Redis as an LRU or LFU cache, or to
# set a hard memory limit for an instance (using the 'noeviction' policy).
# 当将redis用作lru或lfu缓存或为实例设置硬内存限制(使用“noevicetion”策略)时,此选项通常很有
# 用。
#
# WARNING: If you have replicas attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the replicas are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of replicas is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
# 警告:如果将从机附加到启用了maxmemory的实例上,则从已用内存计数中减去提供从机所需的输出缓冲区的
# 大小,这样网络问题/重新同步将不会触发一个循环,其中键被收回,而从机的输出缓冲区则充满了被收回的
# 键的DELs,从而触发删除更多的键,直到数据库完全清空。
#
# In short... if you have replicas attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for replica
# output buffers (but this is not needed if the policy is 'noeviction').
# 简而言之…如果您连接了从机,建议您为maxmemory设置一个下限,以便系统上有一些用于从机输出缓冲区的
# 可用RAM(但如果策略为“noevection”,则不需要这样做)。
#
# maxmemory 

# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
# MaxMemory策略:当达到MaxMemory时,Redis如何选择要删除的内容。您可以在五种行为中进行选择:
#
# volatile-lru -> Evict using approximated LRU among the keys with an expire set.
# allkeys-lru -> Evict any key using approximated LRU.
# volatile-lfu -> Evict using approximated LFU among the keys with an expire set.
# allkeys-lfu -> Evict any key using approximated LFU.
# volatile-random -> Remove a random key among the ones with an expire set.
# allkeys-random -> Remove a random key, any key.
# volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
# noeviction -> Don't evict anything, just return an error on write operations.
# volatile-lru->从设置了过期时间的数据集中,选择最久未使用的数据删除。
# allkeys-lru->从所有的数据集中,选择最久未使用的数据删除。
# volatile-lfu->从设置了过期时间的数据集中,选择最近使用频率最低的数据删除。
# allkeys-lfu->从所有的数据集中,选择最近使用频率最低的数据删除。
# volatile-random->从设置了过期时间的数据集中,随机选择一个数据删除。
# allkeys-random->从所有数据集中,随机选择一个数据删除。
# volatile-ttl->从设置了过期时间的数据集中,选择最接近过期时间的数据删除。
# noevicetion->不删除任何数据,只返回写操作错误。
#
# LRU means Least Recently Used
# LFU means Least Frequently Used
# LRU是指刚使用过的
# LFU是指使用频率最低的
#
# Both LRU, LFU and volatile-ttl are implemented using approximated
# randomized algorithms.
# 使用近似随机算法实现了LRU、LFU和可变TTL。
#
# Note: with any of the above policies, Redis will return an error on write
#       operations, when there are no suitable keys for eviction.
# 注意:对于上述任何一种策略,当没有合适的键进行删除时,redis都会返回一个写操作错误。
#
#       At the date of writing these commands are: set setnx setex append
#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
#       getset mset msetnx exec sort
#       在编写这些命令的日期,这些命令是:set setnx setex append 
#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
#       getset mset msetnx exec sort
#
# The default is:
# 默认值:
#
# maxmemory-policy noeviction

# LRU, LFU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
# LRU、LFU和最小TTL算法不是精确的算法,而是近似的算法(为了节省内存),因此您可以根据速度或精度对
# 其进行调整。对于默认的redis将检查五个键并选择最近使用较少的键,您可以使用以下配置指令更改样本大# 小。
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs more CPU. 3 is faster but not very accurate.
# 默认值5会产生足够好的结果。10非常接近真实的LRU,但需要更多的CPU。3速度更快,但不太准确。
#
# maxmemory-samples 5

# Starting from Redis 5, by default a replica will ignore its maxmemory setting
# (unless it is promoted to master after a failover or manually). It means
# that the eviction of keys will be just handled by the master, sending the
# DEL commands to the replica as keys evict in the master side.
# 从redis 5开始,默认情况下,从机将忽略其maxmemory设置(除非在故障转移后升级为master或手动升
# 级)。这意味着键的删除将由主机处理,将del命令作为主机端的键删除发送到从机。
#
# This behavior ensures that masters and replicas stay consistent, and is usually
# what you want, however if your replica is writable, or you want the replica to have
# a different memory setting, and you are sure all the writes performed to the
# replica are idempotent, then you may change this default (but be sure to understand
# what you are doing).
# 此行为确保主机和从机保持一致,并且通常是您想要的,但是如果您的从机是可写的,或者您希望从机具
# 有不同的内存设置,并且您确定对从机执行的所有写入都是等量的,那么您可以更改此默认值(但一定要了
# 解您正在执行的操作)。
#
# Note that since the replica by default does not evict, it may end using more
# memory than the one set via maxmemory (there are certain buffers that may
# be larger on the replica, or data structures may sometimes take more memory and so
# forth). So make sure you monitor your replicas and make sure they have enough
# memory to never hit a real out-of-memory condition before the master hits
# the configured maxmemory setting.
# 请注意,由于默认情况下从机不会删除数据,它可能会使用比通过maxmemory设置的内存更多的内存(从机
# 上可能有一些更大的缓冲区,或者数据结构有时会占用更多的内存等等)。因此,请确保监视您的从机,
# 并确保它们有足够的内存,在主机达到配置的MaxMemory设置之前,不会遇到真正的内存不足情况。
#
# replica-ignore-maxmemory yes

############################# LAZY FREEING ####################################

# Redis has two primitives to delete keys. One is called DEL and is a blocking
# deletion of the object. It means that the server stops processing new commands
# in order to reclaim all the memory associated with an object in a synchronous
# way. If the key deleted is associated with a small object, the time needed
# in order to execute the DEL command is very small and comparable to most other
# O(1) or O(log_N) commands in Redis. However if the key is associated with an
# aggregated value containing millions of elements, the server can block for
# a long time (even seconds) in order to complete the operation.
# redis有两个原语来删除键。一个被称为del,是对对象的阻塞删除。这意味着服务器停止处理新命令,以便
# 以同步方式回收与对象关联的所有内存。如果删除的键与一个小对象相关联,则执行del命令所需的时间
# 非常短,与redis中的大多数其他o(1)或o(log_n)命令相当。但是,如果该键与包含数百万个元素的聚
# 合值相关联,则服务器可以长时间(甚至秒)阻塞以完成该操作。
#
# For the above reasons Redis also offers non blocking deletion primitives
# such as UNLINK (non blocking DEL) and the ASYNC option of FLUSHALL and
# FLUSHDB commands, in order to reclaim memory in background. Those commands
# are executed in constant time. Another thread will incrementally free the
# object in the background as fast as possible.
# 基于以上原因,redis还提供了非阻塞删除原语,如unlink(non-blocking del)和flushshall和
# flushdb命令的异步选项,以便在后台回收内存。这些命令在固定时间内执行。另一个线程将尽可能快地在
# 后台增量释放对象。
#
# DEL, UNLINK and ASYNC option of FLUSHALL and FLUSHDB are user-controlled.
# It's up to the design of the application to understand when it is a good
# idea to use one or the other. However the Redis server sometimes has to
# delete keys or flush the whole database as a side effect of other operations.
# Specifically Redis deletes objects independently of a user call in the
# following scenarios:
# flushall和flushdb的del、unlink和async操作由用户控制。应用程序的设计完美实现了什么时候使用它。
# 但是,Redis服务器有时必须删除键或刷新整个数据库,这是其他操作的副作用。具体来说,redis在以下
# 情况下删除独立于用户调用的对象:
#
# 1) On eviction, because of the maxmemory and maxmemory policy configurations,
#    in order to make room for new data, without going over the specified
#    memory limit.
# 1)在删除数据时,由于maxmemory和maxmemory策略配置的原因,为了腾出新数据的空间,而不超过指定
# 的内存限制。
# 2) Because of expire: when a key with an associated time to live (see the
#    EXPIRE command) must be deleted from memory.
# 2)由于过期:当具有相关生存时间的键(请参见expire命令)必须从内存中删除时。
# 3) Because of a side effect of a command that stores data on a key that may
#    already exist. For example the RENAME command may delete the old key
#    content when it is replaced with another one. Similarly SUNIONSTORE
#    or SORT with STORE option may delete existing keys. The SET command
#    itself removes any old content of the specified key in order to replace
#    it with the specified string.
# 3)由于命令的副作用,该命令将数据存储在可能已经存在的键上。例如,当用另一个键内容替换旧的键内
#    容时,rename命令可能会将其删除。类似地,suninstore或sort with store选项可能会删除现有的
#    键。set命令本身删除指定键的任何旧内容,以便用指定的字符串替换它。
# 4) During replication, when a replica performs a full resynchronization with
#    its master, the content of the whole database is removed in order to
#    load the RDB file just transferred.
# 4)在复制过程中,当一个从机与其主机执行完全重新同步时,将删除整个数据库的内容,以便加载刚传输的
#    RDB文件。
#
# In all the above cases the default is to delete objects in a blocking way,
# like if DEL was called. However you can configure each case specifically
# in order to instead release memory in a non-blocking way like if UNLINK
# was called, using the following configuration directives:
# 在上述所有情况下,默认情况下都是以阻塞方式删除对象,就像调用del一样。但是,您可以使用以下配置指
# 令专门配置每种情况,以非阻塞方式释放内存,就像调用unlink时一样:

lazyfree-lazy-eviction no
lazyfree-lazy-expire no
lazyfree-lazy-server-del no
replica-lazy-flush no

############################## APPEND ONLY MODE ###############################

# By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
# 默认情况下,redis异步转储磁盘上的数据集。在许多应用程序中,这种模式已经足够好了,但是Redis进程
# 的问题或断电可能会导致几分钟的写入丢失(取决于配置的保存点)。
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
# 追加文件是一种替代的持久性模式,它提供了更好的持久性。例如,使用默认的数据fsync策略(请参阅后
# 面的配置文件)Redis在发生服务器断电等重大事件时,可能只丢失一秒钟的写入时间,或者在Redis进程
# 本身发生错误但操作系统仍在正常运行时丢失一次写入时间。
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
# AOF和RDB持久性可以同时启用,不会出现问题。如果在启动时启用了AOF,redis将加载AOF,它是具有更好
# 持久性的数据文件。
#
# Please check http://redis.io/topics/persistence for more information.
# 有关详细信息,请查看http://redis.io/topics/persistence

appendonly no

# The name of the append only file (default: "appendonly.aof")
# 追加文件的名称(默认值:“AppendOnly.aof”)

appendfilename "appendonly.aof"

# The fsync() call tells the Operating System to actually write data on disk
# instead of waiting for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
# fsync()调用告诉操作系统在磁盘上实际写入数据,而不是在输出缓冲区中等待更多数据。有些操作系统
# 将真正刷新磁盘上的数据,而另一些操作系统则会尽快进行刷新。
#
# Redis supports three different modes:
# Redis支持三种不同的模式:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log. Slow, Safest.
# everysec: fsync only one time every second. Compromise.
# no:不同步,只要让操作系统在需要的时候刷新数据。更快。
# always:每次写入附加日志后fsync。慢,最安全。
# everysec: 每秒钟只同步一次。折中方案。
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
# 默认值是“everysec”,因为这通常是速度和数据安全之间最好的平衡。这取决于您是否理解您是否可以将
# 其放宽为“no”,这样可以让操作系统在需要时刷新输出缓冲区,以获得更好的性能(但如果您能够接受某
# 些数据丢失的想法,请考虑默认的快照持久化模式),相反,使用“always”这一速度非常慢,但比
# everysec更安全。
#
# More details please check the following article:
# 有关详细信息,请参阅以下文章:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec".
# 如果不确定,请使用“everysec”。

# appendfsync always
appendfsync everysec
# appendfsync no

# When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
# 当AOF fsync策略设置为always或everysec,并且后台保存过程(后台保存或AOF日志后台重写)对磁盘
# 执行大量I/O时,在某些Linux配置中,redis可能会在fsync()调用上阻塞太长时间。请注意,目前没
# 有解决这个问题的方法,因为即使在不同的线程中执行fsync,也会阻止我们的同步write(2)调用。
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
# 为了缓解此问题,可以使用以下选项,以防止在进行bgsave或bgrewriteeaof时,在主进程中调用
# fsync()。
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
# 这意味着当另一个子进程正在保存时,redis的持久性与“appendfsync none”相同。实际上,这意味着
# 在最坏的情况下(使用默认的Linux设置),可能会丢失长达30秒的日志。
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
# 如果您有延迟问题,请将其转换为“yes”。否则将其保留为“no”,从持久性的角度来看,这是最安全的选择。

no-appendfsync-on-rewrite no

# Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
# 自动重写追加的文件。
# 当AOF日志大小增加指定的百分比时,Redis能够自动重写隐式调用bgrewriteeaof的日志文件。
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
# 这就是它的工作原理:redis在最后一次重写后记住AOF文件的大小(如果重新启动之后没有发生重写,则
# 使用启动时AOF的大小)。
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
# 将此基本大小与当前大小进行比较。如果当前大小大于指定的百分比,则会触发重写。另外,您需要为要
# 重写的AOF文件指定一个最小大小,这对于避免重写AOF文件很有用,即达到了增加的百分比,但它仍然很
# 小。
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature.
# 指定百分比为0意味着禁用自动AOF重写功能。

auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb

# An AOF file may be found to be truncated at the end during the Redis
# startup process, when the AOF data gets loaded back into memory.
# This may happen when the system where Redis is running
# crashes, especially when an ext4 filesystem is mounted without the
# data=ordered option (however this can't happen when Redis itself
# crashes or aborts but the operating system still works correctly).
# 当AOF数据被加载回内存时,在redis启动过程的最后可能会发现一个AOF文件被截断。尤其是在没有
# data=ordered选项的情况下,安装ext4文件系统时,运行redis的系统可能崩溃。(当然,redis本身崩溃
# 或中止但操作系统仍然正常工作时,这种情况不会发生)。
#
# Redis can either exit with an error when this happens, or load as much
# data as possible (the default now) and start if the AOF file is found
# to be truncated at the end. The following option controls this behavior.
# 当发生这种情况时,redis既可以抛错并退出,也可以加载尽可能多的数据(现在是默认值),如果在最
# 后发现AOF文件被截断,则可以启动它。以下选项控制此行为。
#
# If aof-load-truncated is set to yes, a truncated AOF file is loaded and
# the Redis server starts emitting a log to inform the user of the event.
# Otherwise if the option is set to no, the server aborts with an error
# and refuses to start. When the option is set to no, the user requires
# to fix the AOF file using the "redis-check-aof" utility before to restart
# the server.
# 如果aof-load-truncated设置为“yes”,则会加载一个截断的AOF文件,并且Redis服务器开始发出一个
# 日志来通知用户该事件。否则,如果该选项设置为“no”,服务器将以错误中止并拒绝启动。当选项设置为
# “no”时,用户需要使用“redis-check-aof”实用程序修复aof文件,然后才能重新启动服务器。
#
# Note that if the AOF file will be found to be corrupted in the middle
# the server will still exit with an error. This option only applies when
# Redis will try to read more data from the AOF file but not enough bytes
# will be found.
# 请注意,如果在此过程中发现AOF文件已损坏,服务器仍将出现错误并退出。此选项仅适用于Redis尝试
# 从AOF文件读取更多数据,但找不到足够的字节时。
aof-load-truncated yes

# When rewriting the AOF file, Redis is able to use an RDB preamble in the
# AOF file for faster rewrites and recoveries. When this option is turned
# on the rewritten AOF file is composed of two different stanzas:
# 在重写AOF文件时,Redis可以使用AOF文件中的RDB前缀标识来更快地重写和恢复。启用此选项时,重写的
# AOF文件由两个不同的节组成:
#
#   [RDB file][AOF tail]
#
# When loading Redis recognizes that the AOF file starts with the "REDIS"
# string and loads the prefixed RDB file, and continues loading the AOF
# tail.
# 加载时,redis会识别出以“redis”字符串开头的AOF文件,并加载前缀RDB文件,然后继续加载AOF尾部。
aof-use-rdb-preamble yes

################################ LUA SCRIPTING  ###############################

# Max execution time of a Lua script in milliseconds.
# Lua脚本的最大执行时间(毫秒)。
#
# If the maximum execution time is reached Redis will log that a script is
# still in execution after the maximum allowed time and will start to
# reply to queries with an error.
# 如果达到最大执行时间,redis将在最大允许时间之后仍在执行记录脚本,并开始对出现错误的查询进行
# 回复。
#
# When a long running script exceeds the maximum execution time only the
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
# used to stop a script that did not yet called write commands. The second
# is the only way to shut down the server in the case a write command was
# already issued by the script but the user doesn't want to wait for the natural
# termination of the script.
# 当长时间运行的脚本超过最大执行时间时,只有SCRIPT KILL和SHUTDOWN NOSAVE命令可用。第一个命令
# 可用于停止尚未调用写入命令的脚本。第二种命令是在脚本已经发出写命令,但用户不希望等待脚本自然
# 终止的情况下关闭服务器。
#
# Set it to 0 or a negative value for unlimited execution without warnings.
# 将其设置为0或负值,可以无警告地无限执行。
lua-time-limit 5000

################################ REDIS CLUSTER  ###############################
#
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however
# in order to mark it as "mature" we need to wait for a non trivial percentage
# of users to deploy it in production.
# 警告:Redis集群被认为是稳定的代码,但是为了将其标记为“成熟”,我们需要等待大量用户将其部署到生
# 产环境中。
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
# Normal Redis instances can't be part of a Redis Cluster; only nodes that are
# started as cluster nodes can. In order to start a Redis instance as a
# cluster node enable the cluster support uncommenting the following:
# 普通的redis实例不是redis集群的一部分;只有以集群节点启动的节点可以。要将redis实例作为群集节
# 点启动,请启用群集支持,取消对以下内容的注释:
#
# cluster-enabled yes

# Every cluster node has a cluster configuration file. This file is not
# intended to be edited by hand. It is created and updated by Redis nodes.
# Every Redis Cluster node requires a different cluster configuration file.
# Make sure that instances running in the same system do not have
# overlapping cluster configuration file names.
# 每个集群节点都有一个集群配置文件。此文件不是手动编辑,它由redis节点创建和更新。每个redis群集
# 节点都需要不同的群集配置文件。确保在同一系统中运行的实例没有重叠的群集配置文件名。
#
# cluster-config-file nodes-6379.conf

# Cluster node timeout is the amount of milliseconds a node must be unreachable
# for it to be considered in failure state.
# Most other internal time limits are multiple of the node timeout.
# 集群节点超时时间是指节点无法访问,被视为处于失败状态的毫秒数。大多数其他内部时间限制是节点超
# 时的倍数。
#
# cluster-node-timeout 15000

# A replica of a failing master will avoid to start a failover if its data
# looks too old.
# 如果故障主机的数据看起来太旧,那么它的从机将进行故障转移。
#
# There is no simple way for a replica to actually have an exact measure of
# its "data age", so the following two checks are performed:
# 对于一个从机来说,没有一种简单的方法能够精确测量其“数据年龄”,因此将执行以下两项检查:
#
# 1) If there are multiple replicas able to failover, they exchange messages
#    in order to try to give an advantage to the replica with the best
#    replication offset (more data from the master processed).
#    Replicas will try to get their rank by offset, and apply to the start
#    of the failover a delay proportional to their rank.
# 1)如果有多个从机能够进行故障转移,它们会交换消息,以尝试利用具有最佳复制偏移量的从机(从主服
#    务器处理的更多数据)。从机将尝试按偏移量获取它们的列组,并将与它们的列组成比例的延迟应用于
#    故障转移的开始。
#
# 2) Every single replica computes the time of the last interaction with
#    its master. This can be the last ping or command received (if the master
#    is still in the "connected" state), or the time that elapsed since the
#    disconnection with the master (if the replication link is currently down).
#    If the last interaction is too old, the replica will not try to failover
#    at all.
# 2)每个从机都计算最后一次与主机交互的时间。这可以是收到的最后一个ping或命令(如果主服务器仍
#    处于“已连接”状态),也可以是与主机断开连接后经过的时间(如果复制链接当前已关闭)。如果上
#    一次交互是很久之前的,则从机不会尝试进行故障转移。
#
# The point "2" can be tuned by user. Specifically a replica will not perform
# the failover if, since the last interaction with the master, the time
# elapsed is greater than:
# 第“2”点可以由用户调整。特别是,如果自上次与主服务器交互以来,所用时间大于以下值,则从机将不
# 会执行故障转移:
#
#   (node-timeout * replica-validity-factor) + repl-ping-replica-period
#
# So for example if node-timeout is 30 seconds, and the replica-validity-factor
# is 10, and assuming a default repl-ping-replica-period of 10 seconds, the
# replica will not try to failover if it was not able to talk with the master
# for longer than 310 seconds.
# 举个例子,如果节点超时为30秒,从机有效性系数为10,然后假设默认的从机周期为10秒,那么如果从机在
# 310秒以上无法与主机通信,则不会尝试进行故障转移。
#
# A large replica-validity-factor may allow replicas with too old data to failover
# a master, while a too small value may prevent the cluster from being able to
# elect a replica at all.
# 较大的从机有效性系数可能允许具有太旧数据的从机故障转移主机,而太小的值可能会导致群集根本无法选
# 择从机。
#
# For maximum availability, it is possible to set the replica-validity-factor
# to a value of 0, which means, that replicas will always try to failover the
# master regardless of the last time they interacted with the master.
# (However they'll always try to apply a delay proportional to their
# offset rank).
# 为了获得最大可用性,可以将从机有效性系数设置为0,这意味着无论从机上次与主机交互的时间如何,
# 从机都将始终尝试故障转移主机。(然而,他们总是尝试应用与他们的偏移等级成比例的延迟)。
#
# Zero is the only value able to guarantee that when all the partitions heal
# the cluster will always be able to continue.
# 0是唯一能够保证当所有分区都恢复正常时,集群始终能够继续运行的值。
#
# cluster-replica-validity-factor 10

# Cluster replicas are able to migrate to orphaned masters, that are masters
# that are left without working replicas. This improves the cluster ability
# to resist to failures as otherwise an orphaned master can't be failed over
# in case of failure if it has no working replicas.
# 群集从机能够迁移到孤立的主机,即没有从机的主机。这提高了集群抵御故障的能力,否则,如果一个孤立
# 的主机没有从机,它就不能在发生故障时进行故障转移。
#
# Replicas migrate to orphaned masters only if there are still at least a
# given number of other working replicas for their old master. This number
# is the "migration barrier". A migration barrier of 1 means that a replica
# will migrate only if there is at least 1 other working replica for its master
# and so forth. It usually reflects the number of replicas you want for every
# master in your cluster.
# 只有在为原来主机保留一个最小数量从机的情况下,从机才会迁移到孤立主机。这个数字就是“迁移屏障”。
# 迁移屏障为1意味着只有在主机至少有一个其他工作副本的情况下,从机才会迁移,以此类推。它通常反映
# 集群中每个主机所需的从机数量。
#
# Default is 1 (replicas migrate only if their masters remain with at least
# one replica). To disable migration just set it to a very large value.
# A value of 0 can be set but is useful only for debugging and dangerous
# in production.
# 默认值为1(仅当主机保留至少一个从机时才迁移从机)。要禁用迁移,只需将其设置为非常大的值。
# 可以设置值0,但仅用于调试,在生产中是非常危险的。
#
# cluster-migration-barrier 1

# By default Redis Cluster nodes stop accepting queries if they detect there
# is at least an hash slot uncovered (no available node is serving it).
# This way if the cluster is partially down (for example a range of hash slots
# are no longer covered) all the cluster becomes, eventually, unavailable.
# It automatically returns available as soon as all the slots are covered again.
# 默认情况下,如果Redis群集节点检测到至少有一个裸露的哈希槽(没有可用的节点为其提供服务),
# 则它们将停止接受查询。这样,如果集群部分关闭(例如不再覆盖一系列散列槽),所有集群最终都将
# 不可用。一旦所有插槽再次被覆盖,它就会自动返回可用状态。
#
# However sometimes you want the subset of the cluster which is working,
# to continue to accept queries for the part of the key space that is still
# covered. In order to do so, just set the cluster-require-full-coverage
# option to no.
# 但是,有时您希望集群中正在工作的子集继续接受对仍然被覆盖的键空间的查询。为此,只需将
# cluster-require-full-coverage的值设置为no。
#
# cluster-require-full-coverage yes

# This option, when set to yes, prevents replicas from trying to failover its
# master during master failures. However the master can still perform a
# manual failover, if forced to do so.
# 我们设置这个值为“yes”,防止从机在其主机故障时进行故障转移。当然,也可以手动强制地故障转移。
# 
# This is useful in different scenarios, especially in the case of multiple
# data center operations, where we want one side to never be promoted if not
# in the case of a total DC failure.
# 这在个别情况下是非常有用的,尤其是在多个数据中心操作,只要不是主机存在直流故障,我们不希望
# 从机晋升为主机。
#
# cluster-replica-no-failover no

# In order to setup your cluster make sure to read the documentation
# available at http://redis.io web site.
# 要设置群集,请确保阅读http://redis.io网站上提供的文档。

########################## CLUSTER DOCKER/NAT support  ########################

# In certain deployments, Redis Cluster nodes address discovery fails, because
# addresses are NAT-ted or because ports are forwarded (the typical case is
# Docker and other containers).
# 在某些部署中,Redis群集节点地址发现失败,因为地址是NAT或由于端口被转发(典型情况是Docker和
# 其他容器)。
#
# In order to make Redis Cluster working in such environments, a static
# configuration where each node knows its public address is needed. The
# following two options are used for this scope, and are:
# 为了使Redis群集在此类环境中工作,需要一个静态配置,其中每个节点都知道其公共地址。 以下两个
# 选项用于此范围,分别是:
#
# * cluster-announce-ip
# * cluster-announce-port
# * cluster-announce-bus-port
#
# Each instruct the node about its address, client port, and cluster message
# bus port. The information is then published in the header of the bus packets
# so that other nodes will be able to correctly map the address of the node
# publishing the information.
# 每个节点都有地址、客户机端口和集群消息总线端口。这些信息发布在总线包的header中,以便其他节
# 点能够正确地获得发布信息的节点的地址。
#
# If the above options are not used, the normal Redis Cluster auto-detection
# will be used instead.
# 如果未使用上述选项,则将使用正常的Redis群集自动检测。
#
# Note that when remapped, the bus port may not be at the fixed offset of
# clients port + 10000, so you can specify any port and bus-port depending
# on how they get remapped. If the bus-port is not set, a fixed offset of
# 10000 will be used as usually.
# 请注意,重新映射时,总线端口可能不在客户端端口+ 10000的固定偏移量处,因此您可以根据重新映射
# 的方式指定任何端口和总线端口。 如果未设置总线端口,则通常会使用固定偏移量10000。
#
# Example:
# 举例:
#
# cluster-announce-ip 10.1.1.5
# cluster-announce-port 6379
# cluster-announce-bus-port 6380

################################## SLOW LOG ###################################

# The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
# Redis的慢日志是一个记录超过指定执行时间的查询的系统。 执行时间不包括I / O操作,如与客户
# 端交谈,发送回复等,而只是实际执行命令所需的时间(这是命令执行的唯一阶段,其中线程被阻止并且
# 可以 在此期间不提供其他请求)。
#
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands.
# 您可以使用两个参数配置慢日志:一个告诉Redis执行时间是多少(以微秒为单位),以便命令得到记录,
# 另一个参数是慢日志的长度。 记录新命令时,将从记录命令队列中删除最旧的命令。

# The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
# 以下时间以微秒表示,因此1000000相当于一秒。 请注意,负数会禁用慢日志,而值为零会强制记录每个
# 命令。
slowlog-log-slower-than 10000

# There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
# 这个长度没有限制。 请注意它会消耗内存。 您可以使用SLOWLOG RESET回收慢日志使用的内存。
slowlog-max-len 128

################################ LATENCY MONITOR ##############################

# The Redis latency monitoring subsystem samples different operations
# at runtime in order to collect data related to possible sources of
# latency of a Redis instance.
# redis延迟监控子系统在运行时对不同的操作进行采样,以便收集与redis实例可能的延迟源相关的数据。
#
# Via the LATENCY command this information is available to the user that can
# print graphs and obtain reports.
# 通过延迟命令,用户可以使用这些信息来打印图形和获取报告。
#
# The system only logs operations that were performed in a time equal or
# greater than the amount of milliseconds specified via the
# latency-monitor-threshold configuration directive. When its value is set
# to zero, the latency monitor is turned off.
# 系统只记录在等于或大于latency-monitor-threshold指定的毫秒数的时间内执行的操作。
# 当其值设置为零时,延迟监视器将关闭。
#
# By default latency monitoring is disabled since it is mostly not needed
# if you don't have latency issues, and collecting data has a performance
# impact, that while very small, can be measured under big load. Latency
# monitoring can easily be enabled at runtime using the command
# "CONFIG SET latency-monitor-threshold " if needed.
# 默认情况下,延迟监控是禁用的,因为如果您没有延迟问题,通常不需要它,并且收集数据会对性能产生
# 影响,尽管这很小,但可以在大负载下进行测量。如果需要,可以在运行时使用命令“config set latency 
# monitor threshold”轻松启用延迟监视。
latency-monitor-threshold 0

############################# EVENT NOTIFICATION ##############################

# Redis can notify Pub/Sub clients about events happening in the key space.
# This feature is documented at http://redis.io/topics/notifications
# redis可以通知pub/sub客户端键空间中发生的事件。
# 此功能记录在http://redis.io/topics/notifications上。
#
# For instance if keyspace events notification is enabled, and a client
# performs a DEL operation on key "foo" stored in the Database 0, two
# messages will be published via Pub/Sub:
# 例如,如果启用了键空间事件通知,并且客户机对存储在数据库0中的键“foo”执行del操作,则将通过
# pub/sub发布两条消息:
#
# PUBLISH __keyspace@0__:foo del
# PUBLISH __keyevent@0__:del foo
#
# It is possible to select the events that Redis will notify among a set
# of classes. Every class is identified by a single character:
# 可以在一组类中选择Redis将通知的事件。每个类都由单个字符标识:
#
#  K     Keyspace events, published with __keyspace@__ prefix.
#  E     Keyevent events, published with __keyevent@__ prefix.
#  g     Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
#  $     String commands
#  l     List commands
#  s     Set commands
#  h     Hash commands
#  z     Sorted set commands
#  x     Expired events (events generated every time a key expires)
#  e     Evicted events (events generated when a key is evicted for maxmemory)
#  A     Alias for g$lshzxe, so that the "AKE" string means all the events.
#  K     keyspace事件,以前缀“keyspace@发布。
#  E     keyEvent事件,以前缀“keyEvent@发布。
#  g     通用命令(非特定类型),如del、expire、rename,…
#  $     String命令
#  l     列出命令
#  s     Set命令
#  h     哈希命令
#  z     排序集命令
#  x     过期事件(每次键过期时生成的事件)
#  e     删除事件(为MaxMemory删除键时生成的事件)
#  g     $lshzxe的别名,因此“ake”字符串表示所有事件
#
#  The "notify-keyspace-events" takes as argument a string that is composed
#  of zero or multiple characters. The empty string means that notifications
#  are disabled.
# “notify keyspace events”将一个由零个或多个字符组成的字符串作为参数。空字符串表示通知被禁用。
#
#  Example: to enable list and generic events, from the point of view of the
#           event name, use:
#  示例:要启用列表和常规事件,请从事件名称的角度,使用:
#
#  notify-keyspace-events Elg
#
#  Example 2: to get the stream of the expired keys subscribing to channel
#             name __keyevent@0__:expired use:
# 示例2:要获取订阅频道名称的过期键流,请使用:
#
#  notify-keyspace-events Ex
#
#  By default all notifications are disabled because most users don't need
#  this feature and the feature has some overhead. Note that if you don't
#  specify at least one of K or E, no events will be delivered.
# 默认情况下,所有通知都被禁用,因为大多数用户不需要此功能,而且此功能有一些开销。请注意,
# 如果您没有指定k或e中的至少一个,则不会传递任何事件。
notify-keyspace-events ""

############################### ADVANCED CONFIG ###############################

# Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
# 散列在具有少量条目的情况下,使用内存高效的数据结构进行编码,最大条目的值不超过给定阈值。
# 可以使用以下指令配置这些阈值。
hash-max-ziplist-entries 512
hash-max-ziplist-value 64

# Lists are also encoded in a special way to save a lot of space.
# The number of entries allowed per internal list node can be specified
# as a fixed maximum size or a maximum number of elements.
# For a fixed maximum size, use -5 through -1, meaning:
# -5: max size: 64 Kb  <-- not recommended for normal workloads
# -4: max size: 32 Kb  <-- not recommended
# -3: max size: 16 Kb  <-- probably not recommended
# -2: max size: 8 Kb   <-- good
# -1: max size: 4 Kb   <-- good
# Positive numbers mean store up to _exactly_ that number of elements
# per list node.
# The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size),
# but if your use case is unique, adjust the settings as necessary.
# 列表也以一种特殊的方式编码以节省大量空间。
# 每个内部列表节点允许的条目数可以指定为固定的最大大小或最大元素数。
# 对于固定的最大尺寸,使用-5到-1,意思是:
# -5:最大大小:64 KB<--不建议用于正常工作负载
# -4:最大大小:32 KB<--不推荐
# -3:最大大小:16 KB<--可能不推荐
# -2:最大大小:8kb<--良好
# -1:最大大小:4kb<--良好
# 正数意味着每一个列表节点存储的元素数量要达到这个数量。
# 最高性能选项通常是-2(8kb大小)或-1(4kb大小),但如果您的用例是唯一的,请根据需要调整设置。
list-max-ziplist-size -2

# Lists may also be compressed.
# Compress depth is the number of quicklist ziplist nodes from *each* side of
# the list to *exclude* from compression.  The head and tail of the list
# are always uncompressed for fast push/pop operations.  Settings are:
# 0: disable all list compression
# 1: depth 1 means "don't start compressing until after 1 node into the list,
#    going from either the head or tail"
#    So: [head]->node->node->...->node->[tail]
#    [head], [tail] will always be uncompressed; inner nodes will compress.
# 2: [head]->[next]->node->node->...->node->[prev]->[tail]
#    2 here means: don't compress head or head->next or tail->prev or tail,
#    but compress all nodes between them.
# 3: [head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail]
# etc.
# 列表也可以被压缩。
# Compress Depth是从列表的*每侧*到*从压缩中排除*的QuickList ZipList节点数。对于快速的推/弹出操
# 作,列表的头和尾始终是未压缩的。设置如下:
# 0:禁用所有列表压缩
# 1:深度1表示“在列表中的1个节点之后,从头部或尾部开始压缩
# 因此:[head]->node->node->...->node->[tail][head], [tail]将始终被解压缩;
# 内部节点将被压缩。
# 2:[head]->[next]->node->node->...->node->[prev]->[tail]
# 2这里的意思是:不要压缩head或head->next或tail->prev或tail,而是压缩它们之间的所有节点。
# 3:[head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail]等
list-compress-depth 0

# Sets have a special encoding in just one case: when a set is composed
# of just strings that happen to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
# 在一种情况下,集合有一种特殊的编码:当集合仅由恰好是基数10中64位有符号整数范围内的整数的
# 字符串组成时。以下配置设置集合的大小限制,以便使用此特殊的内存保存编码。
set-max-intset-entries 512

# Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
# 与散列和列表类似,排序集也经过特殊编码以节省大量空间。仅当排序集的长度和元素低于以下限制时
# 才使用此编码:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64

# HyperLogLog sparse representation bytes limit. The limit includes the
# 16 bytes header. When an HyperLogLog using the sparse representation crosses
# this limit, it is converted into the dense representation.
# HyperLogLog稀疏表示字节限制。 限制包括16字节头。 当使用稀疏表示的HyperLogLog超过此限制时,
# 它将转换为密集表示。
#
# A value greater than 16000 is totally useless, since at that point the
# dense representation is more memory efficient.
# 大于16000的值是完全无效的,因为在这一点上,密集表示更节省内存。
#
# The suggested value is ~ 3000 in order to have the benefits of
# the space efficient encoding without slowing down too much PFADD,
# which is O(N) with the sparse encoding. The value can be raised to
# ~ 10000 when CPU is not a concern, but space is, and the data set is
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
# 建议值为3000,以便在不降低太多PFADD(稀疏编码的O(N))的情况下具有节省空间的编码优势。
# 当CPU不是一个问题,但空间是,并且数据集由许多基数在0-15000范围内的超日志组成时,该值可以
# 提高到10000。
hll-sparse-max-bytes 3000

# Streams macro node max size / items. The stream data structure is a radix
# tree of big nodes that encode multiple items inside. Using this configuration
# it is possible to configure how big a single node can be in bytes, and the
# maximum number of items it may contain before switching to a new node when
# appending new stream entries. If any of the following settings are set to
# zero, the limit is ignored, so for instance it is possible to set just a
# max entires limit by setting max-bytes to 0 and max-entries to the desired
# value.
# 数据流中宏节点的最大数。在数据流结构中的树节点是一个大的,多项目的内部编码。使用这种配置,
# 它是可能的配置可以为单节点提供大的字节数,和最大的项目,它可能包含了在切换到新节点的时候
# 需要新加的流条目。如果任何情况下,都将它设置为0,这个限制将忽略,因此可以通过将max-bytes
# 设置为0并将max-entries设置为所需值来作为最大限制。
stream-node-max-bytes 4096
stream-node-max-entries 100

# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation Redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into a hash table
# that is rehashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
# 每100毫秒CPU时间使用1毫秒主动对redis的主哈希表(将顶级键映射到值的表)重新散列。redis使用
# 的哈希表实现(参见dict.c)执行延迟重设:在重设哈希表中运行的操作越多,执行的重设“步骤”就
# 越多,因此,如果服务器处于空闲状态,则重设永远不会完成,哈希表将使用更多内存。
#
# The default is to use this millisecond 10 times every second in order to
# actively rehash the main dictionaries, freeing memory when possible.
# 默认情况下,(上述操作)每秒运行10次,以便主动重新散列主要词典,尽可能释放内存。
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply from time to time
# to queries with 2 milliseconds delay.
# 如果不确定:
# 如果您有硬延迟要求,并且在您的环境中Redis可以不定期地回复延迟2毫秒的查询,请使
# 用“activerehashing no”。
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
# 如果您没有这样的硬要求,但希望在可能的情况下尽快释放内存,请使用“activerehashing yes”。
activerehashing yes

# The client output buffer limits can be used to force disconnection of clients
# that are not reading data from the server fast enough for some reason (a
# common reason is that a Pub/Sub client can't consume messages as fast as the
# publisher can produce them).
# 客户端输出缓冲区限制可用于客户端由于某种原因(通常的原因是发布/订阅客户端无法像发布者生
# 成消息那样快速地消费消息)强制断开服务器读取数据。
#
# The limit can be set differently for the three different classes of clients:
# 可以为三种不同类型的客户设置不同的限制:
#
# normal -> normal clients including MONITOR clients
# replica  -> replica clients
# pubsub -> clients subscribed to at least one pubsub channel or pattern
# normal -> 普通客户端,包括监控客户端
# replica  -> 从机客户端
# pubsub -> 订阅了至少一个PubSub通道或模式的客户端
#
# The syntax of every client-output-buffer-limit directive is the following:
# 每个客户端输出缓冲区限制指令的语法如下:
#
# client-output-buffer-limit    
#
# A client is immediately disconnected once the hard limit is reached, or if
# the soft limit is reached and remains reached for the specified number of
# seconds (continuously).
# So for instance if the hard limit is 32 megabytes and the soft limit is
# 16 megabytes / 10 seconds, the client will get disconnected immediately
# if the size of the output buffers reach 32 megabytes, but will also get
# disconnected if the client reaches 16 megabytes and continuously overcomes
# the limit for 10 seconds.
# 一旦达到硬限制,或者如果达到了软限制并保持一定的秒数(连续),客户端就会立即断开连接。
# 例如,如果硬限制为32 MB,软限制为16 MB/10秒,则如果输出缓冲区的大小达到32 MB,客户端将
# 立即断开连接,但如果客户端达到16 MB并持续超过10秒,则也会断开连接。
#
# By default normal clients are not limited because they don't receive data
# without asking (in a push way), but just after a request, so only
# asynchronous clients may create a scenario where data is requested faster
# than it can read.
# 默认情况下,正常客户端不受限制,因为它们不会在没有询问的情况下(以推送方式)接收数据,只有
# 在请求之后,所以只有异步客户端可能创建一个请求速度快于其读取速度的场景。
#
# Instead there is a default limit for pubsub and replica clients, since
# subscribers and replicas receive data in a push fashion.
# 相反,由于发布/订阅者和从机以推送方式接收数据,所以对订阅者和从机有一个默认限制。
#
# Both the hard or the soft limit can be disabled by setting them to zero.
# 硬限制或软限制都可以通过设置为零来禁用。
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit replica 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60

# Client query buffers accumulate new commands. They are limited to a fixed
# amount by default in order to avoid that a protocol desynchronization (for
# instance due to a bug in the client) will lead to unbound memory usage in
# the query buffer. However you can configure it here if you have very special
# needs, such us huge multi/exec requests or alike.
# 客户端查询缓冲区累积新命令。默认情况下,为了避免协议不同步(例如由于客户机中的错误)将导致
# 查询缓冲区中的未绑定内存使用,它们被限制为固定数量。但是,如果您有非常特殊的需求,比如并发
# 请求或者类似的需求,您可以在这里配置它。
#
# client-query-buffer-limit 1gb

# In the Redis protocol, bulk requests, that are, elements representing single
# strings, are normally limited ot 512 mb. However you can change this limit
# here.
# 在redis协议中,批量请求(即表示单个字符串的元素)通常被限制为512MB。不过,您可以在此处更改
# 此限制。
#
# proto-max-bulk-len 512mb

# Redis calls an internal function to perform many background tasks, like
# closing connections of clients in timeout, purging expired keys that are
# never requested, and so forth.
# redis调用一个内部函数来执行许多后台任务,比如在超时时关闭客户端的连接,清除从未请求过的
# 过期键等等。
#
# Not all tasks are performed with the same frequency, but Redis checks for
# tasks to perform according to the specified "hz" value.
# 并非所有任务都以相同的频率执行,但redis会根据指定的“hz”值检查要执行的任务。
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Redis is idle, but at the same time will make Redis more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
# 默认情况下,“hz”设置为10。当redis空闲的时候,提高这个值会占用更多的CPU,但是当同时有很多键
# 过期的时候,会使redis响应超时的处理更加精确。
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
# 范围在1到500之间,但是超过100通常不是一个好主意。大多数用户应该使用默认值10,并且只在需要
# 非常低延迟的环境中将其提高到100。
hz 10

# Normally it is useful to have an HZ value which is proportional to the
# number of clients connected. This is useful in order, for instance, to
# avoid too many clients are processed for each background task invocation
# in order to avoid latency spikes.
# 通常,有一个与所连接的客户端数量成比例的HZ值是有用的。例如,这对于为每个后台任务调用处理过
# 多的客户端,避免延迟峰值很有用。
#
# Since the default HZ value by default is conservatively set to 10, Redis
# offers, and enables by default, the ability to use an adaptive HZ value
# which will temporary raise when there are many connected clients.
# 由于默认的HZ值保守设置为10,Redis提供并默认启用了使用自适应hz值的能力,当有许多连接的客户
# 端时,该值将临时增加。
#
# When dynamic HZ is enabled, the actual configured HZ will be used as
# as a baseline, but multiples of the configured HZ value will be actually
# used as needed once more clients are connected. In this way an idle
# instance will use very little CPU time while a busy instance will be
# more responsive.
# 当启用动态hz时,实际配置的hz将用作底线,但一旦连接了更多客户端,实际将根据需要使用配置的hz值
# 的倍数。这样,一个空闲实例将占用很少的CPU时间,而一个繁忙的实例将更具响应性。
dynamic-hz yes

# When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
# 当redis重写AOF文件时,如果启用以下选项,则文件将每生成32MB的数据进行fsync。这对于
# 以增量方式将文件提交到磁盘并避免大的延迟峰值非常有用。
aof-rewrite-incremental-fsync yes

# When redis saves RDB file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
# 当redis保存RDB文件时,如果启用了以下选项,则每生成32 MB数据将对文件进行fsync。 这对于以递增
# 方式将文件提交到磁盘并避免大延迟峰值非常有用。
rdb-save-incremental-fsync yes

# Redis LFU eviction (see maxmemory setting) can be tuned. However it is a good
# idea to start with the default settings and only change them after investigating
# how to improve the performances and how the keys LFU change over time, which
# is possible to inspect via the OBJECT FREQ command.
# 可以调整redis的lfu删除算法(请参阅maxmemory设置)。但是最好从默认设置开始,并在研究如何提高
# 性能以及了解在lfu算法下键如何随时间变化后进行更改,这可以通过object freq命令进行检查。
#
# There are two tunable parameters in the Redis LFU implementation: the
# counter logarithm factor and the counter decay time. It is important to
# understand what the two parameters mean before changing them.
# redis的lfu算法实现中有两个可调参数:计数器对数因子和计数器衰减时间。在改变这两个参数之前,
# 了解它们的含义是很重要的。
#
# The LFU counter is just 8 bits per key, it's maximum value is 255, so Redis
# uses a probabilistic increment with logarithmic behavior. Given the value
# of the old counter, when a key is accessed, the counter is incremented in
# this way:
# LFU计数器每个键只有8位,它的最大值是255,因此Redis使用具有对数行为的概率增量。 给定旧计数器
# 的值,当访问键时,计数器以这种方式递增:
#
# 1. A random number R between 0 and 1 is extracted.
# 2. A probability P is calculated as 1/(old_value*lfu_log_factor+1).
# 3. The counter is incremented only if R < P.
# 1. 获得0到1之间的随机数r。
# 2. 概率p计算为1/(old_value*lfu_log_factor+1)。
# 3. 只有当r

 

 

如果有写的不对的地方,请大家多多批评指正,非常感谢!

你可能感兴趣的:(Redis)