【深度学习】Focal Loss 与 GHM——解决样本不平衡问题

Focal Loss 与 GHM

Focal Loss

Focal Loss 的提出主要是为了解决难易样本数量不平衡(注意:这有别于正负样本数量不均衡问题)问题。下面以目标检测应用场景来说明。

  1. 一些 one-stage 的目标检测器通常会产生很多数量的 anchor box,但是只有极少数是正样本,导致正负样本数量不均衡。这里假设我们计算分类损失函数为交叉熵公式。

  2. 由于在目标检测中,大量的候选目标都是易分样本,这些样本的损失很低,但是由于数量极不平衡,易分样本数量相对来说太多,最终主导了总的损失,但是模型也应该关注那些难分样本(难分样本又分为普通难分样本特别难分样本,后面即将讲到的GHM就是为了解决特别难分样本的问题)。

【深度学习】Focal Loss 与 GHM——解决样本不平衡问题_第1张图片

基于以上两个场景中的问题,Focal Loss 给出了很好的解决方法:


GHM

Focal Loss存在一些问题:

  • 如果让模型过多关注 难分样本 会引发一些问题,比如样本中的离群点(outliers),已经收敛的模型可能会因为这些离群点还是被判别错误,总而言之,我们不应该过多关注易分样本,但也不应该过多关注难分样本;
  • \(\alpha\)\(\gamma\) 的取值全从实验得出,且两者要联合一起实验,因为它们的取值会相互影响。

几个概念:

  1. 梯度模长g\(g\) 正比于检测的难易程度,\(g\) 越大则检测难度越大,\(g\) 从交叉熵损失求梯度得来
    \[ g=|p-p^*|= \begin{cases} 1-p, & \text{if p* = 1} \\ p, & \text{if p* = 0} \end{cases} \]
    \(p\) 是模型预测的概率,\(p^*\) 是 Ground-Truth 的标签(取值为1或者0);

    \(g\) 正比于检测的难易程度,\(g\) 越大则检测难度越大;

  2. 梯度模长与样本数量的关系:梯度模长接近于 0 时样本数量最多(这些可归类为易分样本),随着梯度模长的增长,样本数量迅速减少,但是当梯度模长接近于 1 时样本数量也挺多(这些可归类为难分样本)。如果过多关注难分样本,由于其梯度模长比一般样本大很多,可能会降低模型的准确度。因此,要同时抑制易分样本和难分样本!

    【深度学习】Focal Loss 与 GHM——解决样本不平衡问题_第2张图片

  3. 抑制方法之梯度密度 \(G(D)\) 因为易分样本和特别难分样本数量都要比一般样本多一些,而我们要做的就是衰减 单位区间数量多的那类样本,也就是物理学上的密度概念。
    \[ GD(g) = \frac{1}{l_{\epsilon}}\sum_{k=1}^{N}\delta_{\epsilon}(g_k, g) \]
    \(\delta_{\epsilon}(g_k, g)\) 表示样本 \(1 \sim N(样本数量)\) 中,梯度模长分布在 \((g-\frac{\epsilon}{2}, g+\frac{\epsilon}{2} )\) 范围内的样本个数,\(l_{\epsilon}(g)\) 代表了 \((g-\frac{\epsilon}{2}, g+\frac{\epsilon}{2} )\) 区间的长度;

  4. 最后对每个样本,用交叉熵 \(CE\) \(\times\) 该样本梯度密度的倒数即可。

分类问题的GHM损失:
\[ L_{GHM-C} = \sum_{i=1}^{N}\frac{L_{CE}(p_i, p_i^*)}{GD(g_i)} \]
回归问题的GHM损失:
\[ L_{GHM-R} = \sum_{i=1}^N \frac{ASL_1(d_i)}{GD(gr_i)} \]
其中,\(ASL_1(d_i)\) 为修正的 smooth L1 Loss。

抑制效果:
【深度学习】Focal Loss 与 GHM——解决样本不平衡问题_第3张图片


参考资料:

5分钟理解Focal Loss与GHM-解决样本不平衡利器——知乎

转载于:https://www.cnblogs.com/xxxxxxxxx/p/11602248.html

你可能感兴趣的:(【深度学习】Focal Loss 与 GHM——解决样本不平衡问题)