集合运算基本定律

集合运算基本定律

等幂律

S1: A ∩ A = A A \cap A = A AA=A
S2: A ∪ A = A A \cup A =A AA=A

结合律

S3: A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A \cup (B \cup C) = (A \cup B) \cup C A(BC)=(AB)C
S4: ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (A \cap B) \cap C = A \cap (B \cap C) (AB)C=A(BC)
S5: ( A ⊕ B ) ⊕ C = A ⊕ ( B ⊕ C ) (A \oplus B) \oplus C = A \oplus (B \oplus C) (AB)C=A(BC)

交换律

S6: A ∪ B = B ∪ A A \cup B = B \cup A AB=BA
S7: A ∩ B = B ∩ A A \cap B = B \cap A AB=BA
S8: A ⊕ B = B ⊕ A A \oplus B = B \oplus A AB=BA

分配律

S9: A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A \cap (B \cup C) = (A \cap B) \cup (A \cap C) A(BC)=(AB)(AC)
S10: A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A \cup (B \cap C) = (A \cup B) \cap (A \cup C) A(BC)=(AB)(AC)

同一律

S11: A ∩ E = A A \cap E =A AE=A
S12: A ∪ ∅ = A A \cup \empty = A A=A
S13: A − ∅ = A A - \empty = A A=A
S14: A ⊕ ∅ = A A \oplus \empty = A A=A

零律

S15: A ∩ ∅ = ∅ A \cap \empty = \empty A=
S16: A ∪ E = E A \cup E = E AE=E

补余律

S17: A ∩ ∼ A = ∅ A \cap \sim A = \empty AA=
S18: A ∪ ∼ A = E A \cup \sim A = E AA=E

吸收律

S19: A ∪ ( A ∩ B ) = A A \cup (A \cap B) = A A(AB)=A
S20: A ∩ ( A ∪ B ) = A A \cap (A \cup B) =A A(AB)=A

德.摩根律

S21: A − ( B ∪ C ) = ( A − B ) ∩ ( A − C ) A - (B \cup C) = (A - B) \cap (A - C) A(BC)=(AB)(AC)
S22: A − ( B ∩ C ) = ( A − B ) ∪ ( A − C ) A - (B \cap C) = (A - B) \cup (A - C) A(BC)=(AB)(AC)
S23: ∼ ( A ∪ B ) = ∼ A ∩ ∼ B \sim(A \cup B) = \sim A \cap \sim B (AB)=AB
S24: ∼ ( A ∩ B ) = ∼ A ∪ ∼ B \sim(A \cap B) = \sim A \cup \sim B (AB)=AB
S25: ∼ ∅ = E \sim \empty = E =E
S26: ∼ E = ∅ \sim E = \empty E=

双重否定律

S27: ∼ ∼ A = A \sim \sim A = A A=A

其他

S28: A ∩ B ⊆ A A \cap B \subseteq A ABA, A ∩ B ⊆ B A \cap B \subseteq B ABB
S29: A ⊆ A ∪ B A \subseteq A \cup B AAB, B ⊆ A ∪ B B \subseteq A \cup B BAB
S30: A − B ⊆ A A - B \subseteq A ABA
S31: A − B = A ∩ ∼ B A - B = A \cap \sim B AB=AB
S32: A − B = A − A ∩ B A - B = A - A \cap B AB=AAB
S33: A ∩ ( B − C ) = ( A ∩ B ) − ( A ∩ C ) A \cap (B - C) = (A \cap B) - (A \cap C) A(BC)=(AB)(AC)
S34: A ∪ ( B − C ) ⊇ ( A ∪ B ) − ( A ∪ C ) A \cup (B - C) \supseteq (A \cup B) - (A \cup C) A(BC)(AB)(AC)
S35: A ⊕ B ⊆ A ∪ B A \oplus B \subseteq A \cup B ABAB
S36: A ⊕ A = ∅ A \oplus A = \empty AA=
S37: A ∩ ( B − A ) = ∅ A \cap (B - A) = \empty A(BA)=
S38: A ∪ ( B − A ) = A ∪ B A \cup (B - A) = A \cup B A(BA)=AB

你可能感兴趣的:(数学)