生成分布式唯一ID的几种解决方案

分布式ID的特性

唯一性:确保生成的ID是全网唯一的。
有序递增性:确保生成的ID是对于某个用户或者业务是按一定的数字有序递增的。
高可用性:确保任何时候都能正确的生成ID。
带时间:ID里面包含时间,一眼扫过去就知道哪天的交易。


1. UUID

UUID 是 通用唯一识别码(Universally Unique Identifier)的缩写,是一种软件建构的标准,亦为开放软件基金会组织在分布式计算环境领域的一部分。其目的,是让分布式系统中的所有元素,都能有唯一的辨识信息,而不需要通过中央控制端来做辨识信息的指定。如此一来,每个人都可以创建不与其它人冲突的UUID。在这样的情况下,就不需考虑数据库创建时的名称重复问题。

核心思想是结合机器的网卡、当地时间、一个随记数来生成UUID。

UUID是指在一台机器上生成的数字,它保证对在同一时空中的所有机器都是唯一的。

UUID由以下几部分的组合:

(1)当前日期和时间,UUID的第一个部分与时间有关,如果你在生成一个UUID之后,过几秒又生成一个UUID,则第一个部分不同,其余相同。

(2)时钟序列。

(3)全局唯一的IEEE机器识别号,如果有网卡,从网卡MAC地址获得,没有网卡以其他方式获得。

优点:本地生成,生成简单,性能好,没有高可用风险
缺点:长度过长,存储冗余,且无序不可读,查询效率低

public class createUUID {  

  public static void main(String... args) {  

    String uuid = UUID.randomUUID().toString();     //转化为String对象  

    uuid = uuid.replace("-", "");  //因为UUID本身为32位只是生成时多了“-”,所以将它们去点就可  

    System.out.println(uuid);  

  }  

}

数据库自增ID


使用数据库的id自增策略,如 MySQL 的 auto_increment。并且可以使用两台数据库分别设置不同步长,生成不重复ID的策略来实现高可用。

优点:数据库生成的ID绝对有序,高可用实现方式简单
缺点:需要独立部署数据库实例,成本高,有性能瓶颈

1.select max(id) from tablename
2.SELECT LAST_INSERT_ID() 函数
LAST_INSERT_ID 是与table无关的,如果向表a插入数据后,再向表b插入数据,LAST_INSERT_ID会改变。
在多用户交替插入数据的情况下max(id)显然不能用。这时就该使用LAST_INSERT_ID了,因为LAST_INSERT_ID是基于Connection的,只要每个线程都使用独立的 Connection对象,LAST_INSERT_ID函数将返回该Connection对AUTO_INCREMENT列最新的insert or update 操作生成的第一个record的ID。这个值不能被其它客户端(Connection)影响,保证了你能够找回自己的 ID 而不用担心其它客户端的活动,而且不需要加锁。使用单INSERT语句插入多条记录, LAST_INSERT_ID返回一个列表。 
3. select @@IDENTITY;
 @@identity 是表示的是最近一次向具有identity属性(即自增列)的表插入数据时对应的自增列的值,是系统定义的全局变量。一般系统定义的全局变量都是以@@开头,用户自定义变量以@开头。
比如有个表A,它的自增列是id,当向A表插入一行数据后,如果插入数据后自增列的值自动增加至101,则通过select @@identity得到的值就是101。使用@@identity的前提是在进行insert操作后,执行select @@identity的时候连接没有关闭,否则得到的将是NULL值。 
4. SHOW TABLE STATUS;
得出的结果里边对应表名记录中有个Auto_increment字段,里边有下一个自增ID的数值就是当前该表的最大自增ID.

预先生成一批ID

一次按需批量生成多个ID,每次生成都需要访问数据库,将数据库修改为最大的ID值,并在内存中记录当前值及最大值。

优点:避免了每次生成ID都要访问数据库并带来压力,提高性能
缺点:属于本地生成策略,存在单点故障,服务重启造成ID不连续

适用于,重复利用某固定数量ID进行展示或运算的场景

Redis生成ID

Redis的所有命令操作都是单线程的,本身提供像 incr 和 increby 这样的自增原子命令,所以能保证生成的 ID 肯定是唯一有序的。

优点:不依赖于数据库,灵活方便,且性能优于数据库;数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:如果系统中没有Redis,还需要引入新的组件,增加系统复杂度;需要编码和配置的工作量比较大。

考虑到单节点的性能瓶颈,可以使用 Redis 集群来获取更高的吞吐量。假如一个集群中有5台 Redis。可以初始化每台 Redis 的值分别是1, 2, 3, 4, 5,然后步长都是 5。各个 Redis 生成的 ID 为:

A:1, 6, 11, 16, 21
B:2, 7, 12, 17, 22
C:3, 8, 13, 18, 23
D:4, 9, 14, 19, 24
E:5, 10, 15, 20, 25

随便负载到哪个机确定好,未来很难做修改。步长和初始值一定需要事先确定。使用 Redis 集群也可以方式单点故障的问题。
另外,比较适合使用 Redis 来生成每天从0开始的流水号。比如订单号 = 日期 + 当日自增长号。可以每天在 Redis 中生成一个 Key ,使用 INCR 进行累加。

Twitter的snowflake算法

Twitter 利用 zookeeper 实现了一个全局ID生成的服务 Snowflake:github.com/twitter/sno…
https://user-gold-cdn.xitu.io/2018/7/2/1645b1a7a9beb2b6?imageslim
如图的所示,Twitter 的 Snowflake 算法由下面几部分组成:

1位符号位:

由于 long 类型在 java 中带符号的,最高位为符号位,正数为 0,负数为 1,且实际系统中所使用的ID一般都是正数,所以最高位为 0。

41位时间戳(毫秒级):

需要注意的是此处的 41 位时间戳并非存储当前时间的时间戳,而是存储时间戳的差值(当前时间戳 - 起始时间戳),这里的起始时间戳一般是ID生成器开始使用的时间戳,由程序来指定,所以41位毫秒时间戳最多可以使用 (1 << 41) / (1000x60x60x24x365) = 69年。

10位数据机器位:

包括5位数据标识位和5位机器标识位,这10位决定了分布式系统中最多可以部署 1 << 10 = 1024 s个节点。超过这个数量,生成的ID就有可能会冲突。

12位毫秒内的序列:

这 12 位计数支持每个节点每毫秒(同一台机器,同一时刻)最多生成 1 << 12 = 4096个ID
加起来刚好64位,为一个Long型。

优点:高性能,低延迟,按时间有序,一般不会造成ID碰撞
缺点:需要独立的开发和部署,依赖于机器的时钟

简单实现

public class IdWorker {
    /**
     * 起始时间戳 2017-04-01
     */
    private final long epoch = 1491004800000L;
    /**
     * 机器ID所占的位数
     */
    private final long workerIdBits = 5L;
    /**
     * 数据标识ID所占的位数
     */
    private final long dataCenterIdBits = 5L;
    /**
     * 支持的最大机器ID,结果是31
     */
    private final long maxWorkerId = ~(-1L << workerIdBits);
    /**
     * 支持的最大数据标识ID,结果是31
     */
    private final long maxDataCenterId = ~(-1 << dataCenterIdBits);
    /**
     * 毫秒内序列在id中所占的位数
     */
    private final long sequenceBits = 12L;
    /**
     * 机器ID向左移12位
     */
    private final long workerIdShift = sequenceBits;
    /**
     * 数据标识ID向左移17(12+5)位
     */
    private final long dataCenterIdShift = sequenceBits + workerIdBits;
    /**
     * 时间戳向左移22(12+5+5)位
     */
    private final long timestampShift = sequenceBits + workerIdBits + dataCenterIdBits;
    /**
     * 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
     */
    private final long sequenceMask = ~(-1L << sequenceBits);
    /**
     * 数据标识ID(0~31)
     */
    private long dataCenterId;
    /**
     * 机器ID(0~31)
     */
    private long workerId;
    /**
     * 毫秒内序列(0~4095)
     */
    private long sequence;
    /**
     * 上次生成ID的时间戳
     */
    private long lastTimestamp = -1L;

    public IdWorker(long dataCenterId, long workerId) {
        if (dataCenterId > maxDataCenterId || dataCenterId < 0) {
            throw new IllegalArgumentException(String.format("dataCenterId can't be greater than %d or less than 0", maxDataCenterId));
        }
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        this.dataCenterId = dataCenterId;
        this.workerId = workerId;
    }

    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return snowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过,这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        //如果是同一时间生成的,则进行毫秒内序列
        if (timestamp == lastTimestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = nextMillis(lastTimestamp);
            }
        } else {//时间戳改变,毫秒内序列重置
            sequence = 0L;
        }
        lastTimestamp = timestamp;
        //移位并通过按位或运算拼到一起组成64位的ID
        return ((timestamp - epoch) << timestampShift) |
                (dataCenterId << dataCenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }

    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long nextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = lastTimestamp;
        }
        return timestamp;
    } 
}

百度UidGenerator


UidGenerator是百度开源的分布式ID生成器,基于于snowflake算法的实现,看起来感觉还行。不过,国内开源的项目维护性真是担忧。
参考官网说明:https://github.com/baidu/uid-generator


美团Leaf


Leaf 是美团开源的分布式ID生成器,能保证全局唯一性、趋势递增、单调递增、信息安全,里面也提到了几种分布式方案的对比,但也需要依赖关系数据库、Zookeeper等中间件。
参考官网说明:https://tech.meituan.com/

你可能感兴趣的:(中间件,JAVA)