python-多线程(池)/多进程(池)及线程同步编程

目录

多线程编程

threading模块

直接调用

派生

多线程池

ThreadPoolExecutor

线程同步

多进程编程

Process类

直接调用

派生

多进程池

multiprocessing.pool

ProcessPoolExecutor

全部代码

参考


多线程编程

Python提供了几个用于多线程编程的模块,包括thread、threading 和Queue等。thread 和threading模块允许程序员创建和管理线程。thread 模块提供了基本的线程和锁的支持,而threading提供了更高级别,功能更强的线程管理的功能。Queue模块允许用户创建-一个可以用于多个线程之间共享数据的队列数据结构。

不建议使用thread模块,threading模块更高级,既然选择python语言,自然是不想像c语言,汇编语言去考虑内存管理,寄存器等底层的东西,而是希望调用各种模块快速开发(虽然运行效率不高)。

threading模块

threading 模块除了包含 _thread 模块中的所有方法外,还提供其他方法:

  • threading.currentThread(): 返回当前的线程变量。
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

  • run(): 用以表示线程活动的方法。
  • start():启动线程活动。
  • join(timeout=None): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
  • isAlive(): 返回线程是否活动的。
  • getName(): 返回线程名。
  • setName(name): 设置线程名。

直接调用

实例化thread类,调用start()、join()函数。

# 直接实例化Thread
def thread_use():
    nloop = 10
    threads = []

    for i in range(0, nloop):
        t = Thread(target=hello, args=('thread' + str(i),))
        threads.append(t)

    for t in threads:
        t.start()

    for t in threads:
        t.join()

 直接使用Thread类,不做参数的变化。

python-多线程(池)/多进程(池)及线程同步编程_第1张图片 使用Thread类

派生

# 派生Thread
class myThread(Thread):
    def __init__(self, threadID, name, func, args):
        Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.func = func
        self.args = args

    def run(self):
        print("开始线程:" + self.name)
        try:
            if self.func:
                self.func(*self.args)
        finally:
            del self.func, self.args
        print("退出线程:" + self.name)

# 使用派生线程类
def mythread_use():
    nloop = 10
    threads = []

    for i in range(0, nloop):
        t = myThread(i, 'thread' + str(i), hello, args=('thread' + str(i),))
        threads.append(t)

    for t in threads:
        t.start()

    for t in threads:
        t.join()

 主要是修改__init__函数和run函数,对参数和运行方式进行修改。调用方式差不多。

python-多线程(池)/多进程(池)及线程同步编程_第2张图片 派生

 

多线程池

ThreadPoolExecutor

# 使用ThreadPoolExecutor
def thread_pool_executor_use():
    nloop = 10
    executor = ThreadPoolExecutor(4)
    for i in range(nloop):
        executor.submit(hello, 'thread executor' + str(i))
python-多线程(池)/多进程(池)及线程同步编程_第3张图片 多线程池

线程同步

使用队列进行同步,先进先出。

# 线程同步-生产者,消费者
q = queue.Queue(maxsize=10)


# 生产者
def Producer(name):
    count = 0
    while True:
        q.put('骨头%s' % count)
        print('%s生产了骨头' % name, count)
        count += 1
        time.sleep(0.5)
        if q.qsize() == q.maxsize:
            exit(0)


# 消费者
def Consumer(name):
    count = 6
    while count:
        count -= 1
        print('%s吃了%s!' % (name, q.get()))
        time.sleep(1)
    print('%s吃饱了!' % name)
    exit(0)


# 线程同步
def thread_synch():
    p = Thread(target=Producer, args=('主人',))
    p.start()
    c = Thread(target=Consumer, args=('二哈',))
    c.start()

 

python-多线程(池)/多进程(池)及线程同步编程_第4张图片 生产者消费者

多进程编程

Process类

和Thread类差不多,3.7有些优化,kill,close函数等。

直接调用

# 直接实例化Process
def process_use():
    nloop = 10
    processes = []

    for i in range(0, nloop):
        p = Process(target=hello, args=('process' + str(i),))
        processes.append(p)

    for p in processes:
        p.start()

    for p in processes:
        p.join()
python-多线程(池)/多进程(池)及线程同步编程_第5张图片 Process类

派生

同样是修改__init__函数和run函数,不做赘述。

多进程池

multiprocessing.pool

常用apply_async和map函数

# 进程池
def process_pool_use():
    nloop = 10
    arg_list = []
    with Pool(processes=4) as pool:  # start 4 worker processes
        for i in range(nloop):
            pool.apply_async(hello, ('process'+str(i),))  # evaluate "f(10)" asynchronously in a single process
            arg_list.append('process'+str(i))
        pool.map(hello, arg_list)
        pool.close()
        pool.join()

 

python-多线程(池)/多进程(池)及线程同步编程_第6张图片 多进程池

ProcessPoolExecutor

# 使用ProcessPoolExecutor
def process_pool_executor_use():
    nloop = 10
    executor = ProcessPoolExecutor(4)
    for i in range(nloop):
        executor.submit(hello, 'process executor' + str(i))
python-多线程(池)/多进程(池)及线程同步编程_第7张图片 ProcessPoolExecutor

全部代码

"""
--coding:utf-8--
@File: multithreading.py
@Author:frank yu
@DateTime: 2020.07.21 18:32
@Contact: [email protected]
"""
from threading import Thread
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from multiprocessing import Process, Pool
import queue
import time


# 简单的输出函数
def hello(con):
    print('hello,' + con)


# 派生Thread
class myThread(Thread):
    def __init__(self, threadID, name, func, args):
        Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.func = func
        self.args = args

    def run(self):
        print("开始线程:" + self.name)
        try:
            if self.func:
                self.func(*self.args)
        finally:
            del self.func, self.args
        print("退出线程:" + self.name)


# 直接实例化Thread
def thread_use():
    nloop = 10
    threads = []

    for i in range(0, nloop):
        t = Thread(target=hello, args=('thread' + str(i),))
        threads.append(t)

    for t in threads:
        t.start()

    for t in threads:
        t.join()


# 使用派生线程类
def mythread_use():
    nloop = 10
    threads = []

    for i in range(0, nloop):
        t = myThread(i, 'thread' + str(i), hello, args=('thread' + str(i),))
        threads.append(t)

    for t in threads:
        t.start()

    for t in threads:
        t.join()


# 使用ThreadPoolExecutor
def thread_pool_executor_use():
    nloop = 10
    executor = ThreadPoolExecutor(4)
    for i in range(nloop):
        executor.submit(hello, 'thread executor' + str(i))


# 线程同步-生产者,消费者
q = queue.Queue(maxsize=10)


# 生产者
def Producer(name):
    count = 0
    while True:
        q.put('骨头%s' % count)
        print('%s生产了骨头' % name, count)
        count += 1
        time.sleep(0.5)
        if q.qsize() == q.maxsize:
            exit(0)


# 消费者
def Consumer(name):
    count = 6
    while count:
        count -= 1
        print('%s吃了%s!' % (name, q.get()))
        time.sleep(1)
    print('%s吃饱了!' % name)
    exit(0)


# 线程同步
def thread_synch():
    p = Thread(target=Producer, args=('主人',))
    p.start()
    c = Thread(target=Consumer, args=('二哈',))
    c.start()


# 直接实例化Process
def process_use():
    nloop = 10
    processes = []

    for i in range(0, nloop):
        p = Process(target=hello, args=('process' + str(i),))
        processes.append(p)

    for p in processes:
        p.start()

    for p in processes:
        p.join()


# 进程池
def process_pool_use():
    nloop = 10
    arg_list = []
    with Pool(processes=4) as pool:  # start 4 worker processes
        for i in range(nloop):
            pool.apply_async(hello, ('process' + str(i),))  # evaluate "f(10)" asynchronously in a single process
            arg_list.append('process' + str(i))
        pool.map(hello, arg_list)
        pool.close()
        pool.join()


# 使用ProcessPoolExecutor
def process_pool_executor_use():
    nloop = 10
    executor = ProcessPoolExecutor(4)
    for i in range(nloop):
        executor.submit(hello, 'process executor' + str(i))


if __name__ == "__main__":
    # thread_use()
    # mythread_use()
    # thread_pool_executor_use()
    thread_synch()
    # process_use()
    # process_pool_use()
    # process_pool_executor_use()

参考

python 3.7官方文档:threading-基于线程的并行

python 3.7官方文档:processing-基于进程的并行

python 3.7官方文档:concurrent.futures--- 启动并行任务

你可能感兴趣的:(python)