Collection是集合类的上级接口,继承与他的接口主要有Set 和List.
Collections是针对集合类的一个帮助类,他提供一系列静态方法实现对各种集合的搜索、排序、线程安全化等操作。
HashMap和Hashtable都实现了Map接口,因此很多特性非常相似。但是,他们有以下不同点:
HashMap允许键和值是null,而Hashtable不允许键或者值是null。
Hashtable是同步的,而HashMap不是。因此,HashMap更适合于单线程环境,而Hashtable适合于多线程环境。
HashMap提供了可供应用迭代的键的集合,因此,HashMap是快速失败的。另一方面,Hashtable提供了对键的列举(Enumeration)。
一般认为Hashtable是一个遗留的类。
Iterator的安全失败是基于对底层集合做拷贝,因此,它不受源集合上修改的影响。java.util包下面的所有的集合类都是快速失败的,而java.util.concurrent包下面的所有的类都是安全失败的。快速失败的迭代器会抛出ConcurrentModificationException异常,而安全失败的迭代器永远不会抛出这样的异常。
Iterator和ListIterator的区别是:
Iterator可用来遍历Set和List集合,但是ListIterator只能用来遍历List。
Iterator对集合只能是前向遍历,ListIterator既可以前向也可以后向。
ListIterator实现了Iterator接口,并包含其他的功能,比如:增加元素,替换元素,获取前一个和后一个元素的索引,等等。
克隆(cloning)或者是序列化(serialization)的语义和含义是跟具体的实现相关的。因此,应该由集合类的具体实现来决定如何被克隆或者是序列化。
实现Serializable序列化的作用:将对象的状态保存在存储媒体中以便可以在以后重写创建出完全相同的副本;按值将对象从一个从一个应用程序域发向另一个应用程序域。
实现 Serializable接口的作用就是可以把对象存到字节流,然后可以恢复。所以你想如果你的对象没有序列化,怎么才能进行网络传输呢?要网络传输就得转为字节流,所以在分布式应用中,你就得实现序列化。如果你不需要分布式应用,那就没必要实现实现序列化。
ConcurrentHashMap 类中包含两个静态内部类 HashEntry 和 Segment。HashEntry 用来封装映射表的键 / 值对;Segment 用来充当锁的角色,每个 Segment 对象守护整个散列映射表的若干个桶。每个桶是由若干个 HashEntry 对象链接起来的链表。一个 ConcurrentHashMap 实例中包含由若干个 Segment 对象组成的数组。HashEntry 用来封装散列映射表中的键值对。在 HashEntry 类中,key,hash 和 next 域都被声明为 final 型,value 域被声明为 volatile 型。
static final class HashEntry {
final K key; // 声明 key 为 final 型
final int hash; // 声明 hash 值为 final 型
volatile V value; // 声明 value 为 volatile 型
final HashEntry next; // 声明 next 为 final 型
HashEntry(K key, int hash, HashEntry next, V value) {
this.key = key;
this.hash = hash;
this.next = next;
this.value = value;
}
}
在ConcurrentHashMap 中,在散列时如果产生“碰撞”,将采用“分离链接法”来处理“碰撞”:把“碰撞”的 HashEntry 对象链接成一个链表。由于 HashEntry 的 next 域为 final 型,所以新节点只能在链表的表头处插入。 下图是在一个空桶中依次插入 A,B,C 三个 HashEntry 对象后的结构图:
Segment 类继承于 ReentrantLock 类,从而使得 Segment 对象能充当锁的角色。每个 Segment 对象用来守护其(成员对象 table 中)包含的若干个桶。
Concurrenthashmap线程安全的,1.7是在jdk1.7中采用Segment + HashEntry的方式进行实现的,lock加在Segment上面。1.7size计算是先采用不加锁的方式,连续计算元素的个数,最多计算3次:1、如果前后两次计算结果相同,则说明计算出来的元素个数是准确的;2、如果前后两次计算结果都不同,则给每个Segment进行加锁,再计算一次元素的个数;
1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,1.8中使用一个volatile类型的变量baseCount记录元素的个数,当插入新数据或则删除数据时,会通过addCount()方法更新baseCount,通过累加baseCount和CounterCell数组中的数量,即可得到元素的总个数;
TreeMap是一个有序的key-value集合,基于红黑树(Red-Black tree)的 NavigableMap实现。该映射根据其键的自然顺序进行排序,或者根据创建映射时提供的 Comparator进行排序,具体取决于使用的构造方法。
TreeMap的特性:
根节点是黑色
每个节点都只能是红色或者黑色
每个叶节点(NIL节点,空节点)是黑色的。
如果一个节点是红色的,则它两个子节点都是黑色的,也就是说在一条路径上不能出现两个红色的节点。
从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
TreeMap 的实现就是红黑树数据结构,也就说是一棵自平衡的排序二叉树,这样就可以保证当需要快速检索指定节点。
红黑树的插入、删除、遍历时间复杂度都为O(lgN),所以性能上低于哈希表。但是哈希表无法提供键值对的有序输出,红黑树因为是排序插入的,可以按照键的值的大小有序输出。红黑树性质:
性质1:每个节点要么是红色,要么是黑色。
性质2:根节点永远是黑色的。
性质3:所有的叶节点都是空节点(即 null),并且是黑色的。
性质4:每个红色节点的两个子节点都是黑色。(从每个叶子到根的路径上不会有两个连续的红色节点)
性质5:从任一节点到其子树中每个叶子节点的路径都包含相同数量的黑色节点。
ArrayList并发add()可能出现数组下标越界异常。
负载因子默认是0.75, 2^n是为了让散列更加均匀,例如出现极端情况都散列在数组中的一个下标,那么hashmap会由O(1)复杂退化为O(n)的。
Hashmap基于数组实现的,通过对key的hashcode & 数组的长度得到在数组中位置,如当前数组有元素,则数组当前元素next指向要插入的元素,这样来解决hash冲突的,形成了拉链式的结构。put时在多线程情况下,会形成环从而导致死循环。数组长度一般是2n,从0开始编号,所以hashcode & (2n-1),(2n-1)每一位都是1,这样会让散列均匀。需要注意的是 ,HashMap在JDK1.8的版本中引入了红黑树结构做优化,当链表元素个数大于等于8时,链表转换成树结构;若桶中链表元素个数小于等于6时,树结构还原成链表。因为红黑树的平均查找长度是log(n),长度为8的时候,平均查找长度为3,如果继续使用链表,平均查找长度为8/2=4,这才有转换为树的必要。链表长度如果是小于等于6,6/2=3,虽然速度也很快的,但是转化为树结构和生成树的时间并不会太短。还有选择6和8,中间有个差值7可以有效防止链表和树频繁转换。假设一下,如果设计成链表个数超过8则链表转换成树结构,链表个数小于8则树结构转换成链表,如果一个HashMap不停的插入、删除元素,链表个数在8左右徘徊,就会频繁的发生树转链表、链表转树,效率会很低。
在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收。所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁,这就是”池化资源”技术产生的原因。线程池顾名思义就是事先创建若干个可执行的线程放入一个池(容器)中,需要的时候从池中获取线程不用自行创建,使用完毕不需要销毁线程而是放回池中,从而减少创建和销毁线程对象的开销。
Java 5+中的Executor接口定义一个执行线程的工具。它的子类型即线程池接口是ExecutorService。要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,因此在工具类Executors面提供了一些静态工厂方法,生成一些常用的线程池,如下所示:
不能。其它线程只能访问该对象的非同步方法,同步方法则不能进入。因为非静态方法上的synchronized修饰符要求执行方法时要获得对象的锁,如果已经进入A方法说明对象锁已经被取走,那么试图进入B方法的线程就只能在等锁池(注意不是等待池哦)中等待对象的锁。
①sleep()方法给其他线程运行机会时不考虑线程的优先级,因此会给低优先级的线程以运行的机会;yield()方法只会给相同优先级或更高优先级的线程以运行的机会;
② 线程执行sleep()方法后转入阻塞(blocked)状态,而执行yield()方法后转入就绪(ready)状态;
③ sleep()方法声明抛出InterruptedException,而yield()方法没有声明任何异常;
④ sleep()方法比yield()方法(跟操作系统CPU调度相关)具有更好的可移植性。
监视器和锁在Java虚拟机中是一块使用的。监视器监视一块同步代码块,确保一次只有一个线程执行同步代码块。每一个监视器都和一个对象引用相关联。线程在获取锁之前不允许执行同步代码。
CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同:
CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;
而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;
另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能执行。
第三:提高线程的可管理性,线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。
AQS其实就是一个可以给我们实现锁的框架
内部实现的关键是:先进先出的队列、state状态
定义了内部类ConditionObject
拥有两种线程模式独占模式和共享模式。
在LOCK包中的相关锁(常用的有ReentrantLock、 ReadWriteLock)都是基于AQS来构建,一般我们叫AQS为同步器。
线程池主要就是指定线程池核心线程数大小,最大线程数,存储的队列,拒绝策略,空闲线程存活时长。当需要任务大于核心线程数时候,就开始把任务往存储任务的队列里,当存储队列满了的话,就开始增加线程池创建的线程数量,如果当线程数量也达到了最大,就开始执行拒绝策略,比如说记录日志,直接丢弃,或者丢弃最老的任务。
使用多线程的时候,一种非常简单的避免死锁的方式就是:指定获取锁的顺序,并强制线程按照指定的顺序获取锁。因此,如果所有的线程都是以同样的顺序加锁和释放锁,就不会出现死锁了。
预防死锁,预先破坏产生死锁的四个条件。互斥不可能破坏,所以有如下三种方法:
1.破坏请求和保持条件,进程必须等所有要请求的资源都空闲时才能申请资源,这种方法会使资源浪费严重(有些资源可能仅在运行初期或结束时才使用,甚至根本不使用). 允许进程获取初期所需资源后,便开始运行,运行过程中再逐步释放自己占有的资源,比如有一个进程的任务是把数据复制到磁盘中再打印,前期只需获得磁盘资源而不需要获得打印机资源,待复制完毕后再释放掉磁盘资源。这种方法比第一种方法好,会使资源利用率上升。
2.破坏不可抢占条件,这种方法代价大,实现复杂。
3.破坏循坏等待条件,对各进程请求资源的顺序做一个规定,避免相互等待。这种方法对资源的利用率比前两种都高,但是前期要为设备指定序号,新设备加入会有一个问题,其次对用户编程也有限制。
synchronized既可以加在方法上,也可以加载特定代码块上,而lock需要显示地指定起始位置和终止位置。
synchronized是托管给JVM执行的,lock的锁定是通过代码实现的,它有比synchronized更精确的线程语义。
性能上的不同:
lock接口的实现类ReentrantLock,不仅具有和synchronized相同的并发性和内存语义,还多了超时的获取锁、定时锁、等候和中断锁等。
在竞争不是很激烈的情况下,synchronized的性能优于ReentrantLock,竞争激烈的情况下synchronized的性能会下降的非常快,而ReentrantLock则基本不变。
锁机制不同:
synchronized获取锁和释放锁的方式都是在块结构中,当获取多个锁时,必须以相反的顺序释放,并且是自动解锁。而Lock则需要开发人员手动释放,并且必须在finally中释放,否则会引起死锁。
每个锁关联一个线程持有者和一个计数器。当计数器为0时表示该锁没有被任何线程持有,那么任何线程都都可能获得该锁而调用相应方法。当一个线程请求成功后,JVM会记下持有锁的线程,并将计数器计为1。此时其他线程请求该锁,则必须等待。而该持有锁的线程如果再次请求这个锁,就可以再次拿到这个锁,同时计数器会递增。当线程退出一个synchronized方法/块时,计数器会递减,如果计数器为0则释放该锁。
如果一个锁是公平的,那么锁的获取顺序就应该符合请求的绝对时间顺序,FIFO。对于非公平锁,只要CAS设置同步状态成功,则表示当前线程获取了锁,而公平锁还需要判断当前节点是否有前驱节点,如果有,则表示有线程比当前线程更早请求获取锁,因此需要等待前驱线程获取并释放锁之后才能继续获取锁。
Java运行时环境(JRE)是将要执行Java程序的Java虚拟机。它同时也包含了执行applet需要的浏览器插件。Java开发工具包(JDK)是完整的Java软件开发包,包含了JRE,编译器和其他的工具(比如:JavaDoc,Java调试器),可以让开发者开发、编译、执行Java应用程序。
JDK1.8引入了LongAdder类。CAS机制就是,在一个死循环内,不断尝试修改目标值,直到修改成功。如果竞争不激烈,那么修改成功的概率就很高,否则,修改失败的的概率就很高,在大量修改失败时,这些原子操作就会进行多次循环尝试,因此性能就会受到影响。 结合ConcurrentHashMap的实现思想,应该可以想到对一种传统AtomicInteger等原子类的改进思路。虽然CAS操作没有锁,但是像减少粒度这种分离热点的思想依然可以使用。将AtomicInteger的内部核心数据value分离成一个数组,每个线程访问时,通过哈希等算法映射到其中一个数字进行计数,而最终的计数结果,则为这个数组的求和累加。热点数据value被分离成多个单元cell,每个cell独自维护内部的值,当前对象的实际值由所有的cell累计合成,这样热点就进行了有效的分离,提高了并行度。
JVM中类的装载是由ClassLoader和它的子类来实现的,Java ClassLoader 是一个重要的Java运行时系统组件。它负责在运行时查找和装入类文件的类。
Java中的所有类,都需要由类加载器装载到JVM中才能运行。类加载器本身也是一个类,而它的工作就是把class文件从硬盘读取到内存中。在写程序的时候,我们几乎不需要关心类的加载,因为这些都是隐式装载的,除非我们有特殊的用法,像是反射,就需要显式的加载所需要的类。
类装载方式,有两种
(1)隐式装载,程序在运行过程中当碰到通过new 等方式生成对象时,隐式调用类装载器加载对应的类到jvm中,
(2)显式装载,通过class.forname()等方法,显式加载需要的类 ,隐式加载与显式加载的区别:两者本质是一样的。
Java类的加载是动态的,它并不会一次性将所有类全部加载后再运行,而是保证程序运行的基础类(像是基类)完全加载到jvm中,至于其他类,则在需要的时候才加载。这当然就是为了节省内存开销。
(1)堆内存分配
JVM初始分配的内存由-Xms指定,默认是物理内存的1/64;JVM最大分配的内存由-Xmx指定,默认是物理内存的1/4。默认空余堆内存小 于40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。因此服务器一般设置-Xms、 -Xmx相等以避免在每次GC后调整堆的大小。
(2)非堆内存分配
JVM使用-XX:PermSize设置非堆内存初始值,默认是物理内存的1/64;由XX:MaxPermSize设置最大非堆内存的大小,默认是物理内存的1/4。
(3)VM最大内存
首先JVM内存限制于实际的最大物理内存,假设物理内存无限大的话,JVM内存的最大值跟操作系统有很大的关系。简单的说就32位处理器虽 然可控内存空间有4GB,但是具体的操作系统会给一个限制,这个限制一般是2GB-3GB(一般来说Windows系统下为1.5G-2G,Linux系 统下为2G-3G),而64bit以上的处理器就不会有限制了。
(3)下面是当前比较流行的几个不同公司不同版本JVM最大堆内存:
线程是比进程更轻量级的调度执行单位。线程可以把一个进程的资源分配和执行调度分开。一个进程里可以启动多条线程,各个线程可共享该进程的资源(内存地址,文件IO等),又可以独立调度。线程是CPU调度的基本单位。
主流OS都提供线程实现。Java语言提供对线程操作的同一API,每个已经执行start(),且还未结束的java.lang.Thread类的实例,代表了一个线程。
Thread类的关键方法,都声明为Native。这意味着这个方法无法或没有使用平台无关的手段来实现,也可能是为了执行效率。
实现线程的方式
A.使用内核线程实现内核线程(Kernel-Level Thread, KLT)就是直接由操作系统内核支持的线程。
内核来完成线程切换
内核通过调度器Scheduler调度线程,并将线程的任务映射到各个CPU上
程序使用内核线程的高级接口,轻量级进程(Light Weight Process,LWP)
用户态和内核态切换消耗内核资源
使用用户线程实现
系统内核不能感知线程存在的实现
用户线程的建立、同步、销毁和调度完全在用户态中完成
所有线程操作需要用户程序自己处理,复杂度高
用户线程加轻量级进程混合实现
轻量级进程作为用户线程和内核线程之间的桥梁
Java内存模型(简称JMM),JMM决定一个线程对共享变量的写入何时对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。
本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。其关系模型图如下图所示:
虚拟机栈中的引用对象
方法区中类静态属性引用的对象
方法区中常量引用对象
本地方法栈中JNI引用对象
即使在可达性分析算法中不可达的对象,也并非是“非回收不可”的,这时候它们暂时处于“等待”阶段,要真正宣告一个对象回收,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。(即意味着直接回收)
如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列之中,并在稍后由一个由虚拟机自动建立的、低优先级的Finalizer线程去执行它。这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能会导致F-Queue队列中其他对象永久处于等待,甚至导致整个内存回收系统崩溃。
finalize()方法是对象逃脱回收的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中跳出回收——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移除出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的被回收了。
解释运行字节码程序消除平台相关性。
jvm将java字节码解释为具体平台的具体指令。一般的高级语言如要在不同的平台上运行,至少需要编译成不同的目标代码。而引入JVM后,Java语言在不同平台上运行时不需要重新编译。Java语言使用模式Java虚拟机屏蔽了与具体平台相关的信息,使得Java语言编译程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台上不加修改地运行。Java虚拟机在执行字节码时,把字节码解释成具体平台上的机器指令执行。
目前主流的虚拟机实现都采用了分代收集的思想,把整个堆区划分为新生代和老年代;新生代又被划分成Eden 空间、 From Survivor 和 To Survivor 三块区域。
我们把Eden : From Survivor : To Survivor 空间大小设成 8 : 1 : 1 ,对象总是在 Eden 区出生, From Survivor 保存当前的幸存对象, To Survivor 为空。一次 gc 发生后: 1)Eden 区活着的对象 + From Survivor 存储的对象被复制到 To Survivor ;
2) 清空 Eden 和 From Survivor ; 3) 颠倒 From Survivor 和 To Survivor 的逻辑关系: From 变 To , To 变 From 。可以看出,只有在 Eden 空间快满的时候才会触发 Minor GC 。而 Eden 空间占新生代的绝大部分,所以 Minor GC 的频率得以降低。当然,使用两个 Survivor 这种方式我们也付出了一定的代价,如 10% 的空间浪费、复制对象的开销等。
如下图所示,JVM类加载机制分为五个部分:加载,验证,准备,解析,初始化,下面我们就分别来看一下这五个过程。
加载
加载是类加载过程中的一个阶段,这个阶段会在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的入口。注意这里不一定非得要从一个Class文件获取,这里既可以从ZIP包中读取(比如从jar包和war包中读取),也可以在运行时计算生成(动态代理),也可以由其它文件生成(比如将JSP文件转换成对应的Class类)。
验证
这一阶段的主要目的是为了确保Class文件的字节流中包含的信息是否符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
准备
准备阶段是正式为类变量分配内存并设置类变量的初始值阶段,即在方法区中分配这些变量所使用的内存空间。注意这里所说的初始值概念,比如一个类变量定义为:
public static int v = 8080;
实际上变量v在准备阶段过后的初始值为0而不是8080,将v赋值为8080的putstatic指令是程序被编译后,存放于类构造器方法之中,这里我们后面会解释。
但是注意如果声明为:
public static final int v = 8080;
在编译阶段会为v生成ConstantValue属性,在准备阶段虚拟机会根据ConstantValue属性将v赋值为8080。
解析
解析阶段是指虚拟机将常量池中的符号引用替换为直接引用的过程。符号引用就是class文件中的:
CONSTANT_Class_info
CONSTANT_Field_info
CONSTANT_Method_info
等类型的常量。
下面我们解释一下符号引用和直接引用的概念:
符号引用与虚拟机实现的布局无关,引用的目标并不一定要已经加载到内存中。各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须是一致的,因为符号引用的字面量形式明确定义在Java虚拟机规范的Class文件格式中。
直接引用可以是指向目标的指针,相对偏移量或是一个能间接定位到目标的句柄。如果有了直接引用,那引用的目标必定已经在内存中存在。
初始化
初始化阶段是类加载最后一个阶段,前面的类加载阶段之后,除了在加载阶段可以自定义类加载器以外,其它操作都由JVM主导。到了初始阶段,才开始真正执行类中定义的Java程序代码。
初始化阶段是执行类构造器方法的过程。方法是由编译器自动收集类中的类变量的赋值操作和静态语句块中的语句合并而成的。虚拟机会保证方法执行之前,父类的方法已经执行完毕。p.s: 如果一个类中没有对静态变量赋值也没有静态语句块,那么编译器可以不为这个类生成()方法。
注意以下几种情况不会执行类初始化:
通过子类引用父类的静态字段,只会触发父类的初始化,而不会触发子类的初始化。
定义对象数组,不会触发该类的初始化。
常量在编译期间会存入调用类的常量池中,本质上并没有直接引用定义常量的类,不会触发定义常量所在的类。
通过类名获取Class对象,不会触发类的初始化。
通过Class.forName加载指定类时,如果指定参数initialize为false时,也不会触发类初始化,其实这个参数是告诉虚拟机,是否要对类进行初始化。
通过ClassLoader默认的loadClass方法,也不会触发初始化动作。
类加载器
虚拟机设计团队把加载动作放到JVM外部实现,以便让应用程序决定如何获取所需的类,JVM提供了3种类加载器:
启动类加载器(Bootstrap ClassLoader):负责加载 JAVA_HOME\lib 目录中的,或通过-Xbootclasspath参数指定路径中的,且被虚拟机认可(按文件名识别,如rt.jar)的类。
扩展类加载器(Extension ClassLoader):负责加载 JAVA_HOME\lib\ext 目录中的,或通过java.ext.dirs系统变量指定路径中的类库。
应用程序类加载器(Application ClassLoader):负责加载用户路径(classpath)上的类库。
JVM通过双亲委派模型进行类的加载,当然我们也可以通过继承java.lang.ClassLoader实现自定义的类加载器。
当一个类加载器收到类加载任务,会先交给其父类加载器去完成,因此最终加载任务都会传递到顶层的启动类加载器,只有当父类加载器无法完成加载任务时,才会尝试执行加载任务。采用双亲委派的一个好处是比如加载位于rt.jar包中的类java.lang.Object,不管是哪个加载器加载这个类,最终都是委托给顶层的启动类加载器进行加载,这样就保证了使用不同的类加载器最终得到的都是同样一个Object对象。
CMS收集器
CMS(Concurrent Mark Swep)收集器是一个比较重要的回收器,现在应用非常广泛,我们重点来看一下,CMS一种获取最短回收停顿时间为目标的收集器,这使得它很适合用于和用户交互的业务。从名字(Mark Swep)就可以看出,CMS收集器是基于标记清除算法实现的。它的收集过程分为四个步骤:
初始标记(initial mark)
并发标记(concurrent mark)
重新标记(remark)
并发清除(concurrent sweep)
注意初始标记和重新标记还是会stop the world,但是在耗费时间更长的并发标记和并发清除两个阶段都可以和用户进程同时工作。
CMS:采用标记清除算法
解决这个问题的办法就是可以让CMS在进行一定次数的Full GC(标记清除)的时候进行一次标记整理算法,CMS提供了以下参数来控制:
-XX:UseCMSCompactAtFullCollection -XX:CMSFullGCBeforeCompaction=5
也就是CMS在进行5次Full GC(标记清除)之后进行一次标记整理算法,从而可以控制老年带的碎片在一定的数量以内,甚至可以配置CMS在每次Full GC的时候都进行内存的整理。
对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是”可达的”,哪些对象是”不可达的”。当GC确定一些对象为”不可达”时,GC就有责任回收这些内存空间。可以。程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行。
error 表示恢复不是不可能但很困难的情况下的一种严重问题。比如说内存溢出。不可能指望程序能处理这样的情况。
exception 表示一种设计或实现问题。也就是说,它表示如果程序运行正常,从不会发生的情况。
当JAVA 程序违反了JAVA的语义规则时,JAVA虚拟机就会将发生的错误表示为一个异常。违反语义规则包括2种情况。一种是JAVA类库内置的语义检查。例如数组下标越界,会引发IndexOutOfBoundsException;访问null的对象时会引发NullPointerException。另一种情况就是JAVA允许程序员扩展这种语义检查,程序员可以创建自己的异常,并自由选择在何时用throw关键字引发异常。所有的异常都是 java.lang.Thowable的子类。
异常表示程序运行过程中可能出现的非正常状态,运行时异常表示虚拟机的通常操作中可能遇到的异常,是一种常见运行错误,只要程序设计得没有问题通常就不会发生。受检异常跟程序运行的上下文环境有关,即使程序设计无误,仍然可能因使用的问题而引发。Java编译器要求方法必须声明抛出可能发生的受检异常,但是并不要求必须声明抛出未被捕获的运行时异常。异常和继承一样,是面向对象程序设计中经常被滥用的东西,在Effective Java中对异常的使用给出了以下指导原则: