SMO算法实现多类划分

SMO算法,是求解SVM对偶问题(凸二次规划问题)的一种算法,由Platt在1998提出。下面会基于python实现SMO算法。但传统的SVM只能实现2类划分,因此下面会基于one vs one 思想处理多类划分问题。

* one vs one*

 其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。

  当对一个未知样本进行分类时,用这所有的分类器测试样本,最后得票最多的类别即为该未知样本的类别。

  Libsvm中的多类分类就是根据这个方法实现的。

  假设有四类A,B,C,D四类。在训练的时候我选择A,B; A,C; A,D; B,C; B,D;C,D所对应的向量作为训练集,然后得到六个训练结果,在测试的时候,把对应的向量分别对六个结果进行测试,然后采取投票形式,最后得到一组结果。

  投票是这样的:
  A=B=C=D=0;
  (A,B)-classifier 如果是A win,则A=A+1;otherwise,B=B+1;
  (A,C)-classifier 如果是A win,则A=A+1;otherwise, C=C+1;
  …
  (C,D)-classifier 如果是A win,则C=C+1;otherwise,D=D+1;
  The decision is the Max(A,B,C,D)

评价:这种方法虽然好,但是当类别很多的时候,model的个数是n*(n-1)/2,代价还是相当大的。


#smo实现

# 辅助函数,在(0,m)区间范围内随机选择一个不等于i的整数
from numpy import *
def selectJrand(i,m):
    j=i
    # 注意返回的随机整数不应该等于i
    while (j==i):
        j = int(random.uniform(0,m))
    return j

# 辅助函数,调整数值大于H或小雨L的alpha值
# 为alpha值设定上下限
def clipAlpha(aj,H,L):
    if aj > H: 
        aj = H
    if L > aj:
        aj = L
    return aj

# 辅助函数,对于给定的alpha值,计算E值并返回
def calcEk(oS, k):
    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

# 辅助函数,用来选择第二个alpha值并保证每次优化中采用最大步长
def selectJ(i, oS, Ei):
    maxK = -1; maxDeltaE = 0; Ej = 0

    # 将输入的Ei在误差缓存中设置为已经计算好的
    oS.eCache[i] = [1,Ei]

    # 构建一个非零表
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    if (len(validEcacheList)) > 1:
        # 循环查找最大步长的Ej
        for k in validEcacheList:
            if k == i: continue #don't calc for i, waste of time
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej
    else:
        # 如果是第一次循环
        # 随机选择一个alpha值,并计算Ej
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej

# 辅助函数,当alpha优化后更新误差缓存
def updateEk(oS, k):
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]

# 核转换函数,参数为两个数值和一个元组kTup(记录核函数信息)
def kernelTrans(X, A, kTup):
    # 建立列向量
    m,n = shape(X)
    K = mat(zeros((m,1)))

    # 根据不同的核函数类型,给出两种类型的实现
    if kTup[0]=='lin': K = X * A.T
    elif kTup[0]=='rbf':
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = exp(K/(-1*kTup[1]**2))
    # 无法识别的核函数类型
    else: raise NameError('Houston We Have a Problem -- \
    That Kernel is not recognized')
    return K

# 数据及参数存储
class optStruct:
    def __init__(self,dataMatIn, classLabels, C, toler, kTup):
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2))) #first column is valid flag
        self.K = mat(zeros((self.m,self.m)))
        for i in range(self.m):
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

# 寻找决策边界的优化例程函数
def innerL(i, oS):
    # 根据alpha计算Ei值
    Ei = calcEk(oS, i)

    # 根据误差Ei判断alpha是否可以被优化
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        # 选择第二个alpha值
        j,Ej = selectJ(i, oS, Ei)
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();

        # 保证alpha值范围在0-C区间
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])

        if L==H: print ("L==H"); return 0

        # 计算alpha[j]的最优修改量
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] 
        if eta >= 0: print ("eta>=0"); return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j) #added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); return 0

        # 对i进行修改,修改量与j相同,但方向相反
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
        updateEk(oS, i)

        # 计算并设置常数项b
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0

        # alpha被优化则返回1
        return 1

    else: return 0

# 完整的Platt SMO算法
def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):
    # 初始化`optStruct`,将输入参数存入数据对象
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)

    # 初始化控制函数退出的变量
    iter = 0
    entireSet = True; alphaPairsChanged = 0

    # 进入主体while循环
    # 设置多个循环退出条件,例如迭代达到最大次数或遍历集合后未修改任何alpha值时候退出
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:
            # 遍历任何可能的alpha值
            for i in range(oS.m): 
                alphaPairsChanged += innerL(i,oS)
                #print ("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:
            # 遍历非边界值
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                #print ("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        # 在完整遍历和非边界值遍历之间来回切换
        if entireSet: entireSet = False
        elif (alphaPairsChanged == 0): entireSet = True  
        #print ("iteration number: %d" % iter)
    # 返回常数b及alpha值
    return oS.b,oS.alphas

# 训练算法
def train(dataset,target,kTup=('rbf', 50)):
    # 读取训练数据
    #X_train, X_test, y_train, y_test=train_test_split(dataset,target,test_size=.4,random_state=1)
    dataArr,labelArr = dataset,target

    # Platt SMO算法进行SVM训练,获取b及alpha值
    b,alphas = smoP(dataArr, labelArr, 1, 0.001, 2500, kTup)

    # 建立矩阵数据副本
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()

    # 获得非0的alpha值
    svInd=nonzero(alphas.A>0)[0]

    # 得到所需的支持向量和alpha的类别标签值
    sVs=datMat[svInd] 
    labelSV = labelMat[svInd];
    print ("there are %d Support Vectors" % shape(sVs)[0])

    m,n = shape(datMat)
    errorCount = 0
    # 遍历训练数据
    for i in range(m):
        # 利用核函数进行分类,得到预测结果
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b

        # 对比预测结果与真实分类,计算错误率
        if sign(predict)!=sign(labelArr[i]): errorCount += 1

    # 输出训练数据的错误率
    print ("the training error rate is: %f" % (float(errorCount)/m))

    return b,alphas

    '''# 读取测试数据
    dataArr,labelArr = X_test,y_test
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)

    # 遍历测试数据
    for i in range(m):
        # 利用核函数进行分类,得到预测结果
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b

        # 对比预测结果与真实分类,计算错误率
        if sign(predict)!=sign(labelArr[i]): errorCount += 1

    # 输出测试错误率
    print ("the test error rate is: %f" % (float(errorCount)/m))'''
'''关键代码'''
#我采用“one vs one ”的方法处理多类划分问题,由于数据集类别有三类,所以一共有3种对比:1-2,1-3,2-3

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

D=np.array([[1,2],[1,3],[2,3]])
A=B=C=0
dictclass={}  #用于储存3个分类器的b,alphas

X_train, X_test, y_train, y_test=train_test_split(dataset,target,test_size=.4,random_state=1)
trainset,trainlabel=X_train,y_train    
for a,c in D:
    index=np.concatenate((np.nonzero(trainlabel==a)[0],np.nonzero(trainlabel==c)[0]))
    target11=np.array([trainlabel[k] for k in index])
    target1=np.array([-1 if k!=a else 1 for k in target11])
    trainset1=np.array([trainset[k] for k in index])
    print(target1.shape,trainset1.shape)  #(3132,)
    b,alphas=train(trainset1,target1)
    dictclass[str(a)+str(c)]=(b,alphas)
#测试测试集

testset, testlabel = X_test, y_test
testset=mat(testset)
testlabel = mat(testlabel).transpose()
#对测试集进行onevsone检测
m = testset.shape[0]
corr = 0
for i in range(m):
    # 利用核函数进行分类,得到预测结果
    A = B = C = 0
    for key, value in dictclass.items():
        b, alphas = value
        # 获得非0的alpha值
        svInd = nonzero(alphas.A > 0)[0]
        # 得到所需的支持向量和alpha的类别标签值
        sVs = np.mat(trainset)[svInd]
        labelSV = np.mat(trainlabel).transpose()[svInd]
        print(sVs.shape, testset[i, :].shape)
        kernelEval = kernelTrans(sVs, testset[i, :], kTup=('rbf', 50))
        print(multiply(labelSV, alphas[svInd]).shape)
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if predict > 0:
            if key == '12' or key == '13': A += 1
            if key == '23': B += 1
        elif predict < 0:
            if key == '12': B += 1
            if key == '23' or key == '13': C += 1
    # 对比预测结果与真实分类,计算错误率
    if max(A, B, C) == testlabel[i]: corr += 1
print('正确率:', corr / m)  
#下面代码是利用sklearn 的SVC,linearSVC的分类性能作为对比

from sklearn.svm import SVC,NuSVC,LinearSVC
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

names=['SVC','LinearSVC']
classifiers =[SVC(C=3,gamma=0.001,decision_function_shape='ovo',class_weight={1:7,2:1.83,3:3.17},random_state=1),
              LinearSVC(C=2,class_weight={1:7,2:1.83,3:3.17},random_state=1)]
X= dataset
y=target
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=.4)  #split dataset
print('测试集大小:',X_test.shape,y_test.shape)
i=0
for name,clf in zip(names,classifiers):
    print(name,':')
    clf.fit(X_train, y_train)
    score = clf.score(X_test, y_test)
    print(score)    

经检验,对于我使用的数据集,SVC和SOM利用onevsone思想实现的SVM的分类效果基本一致,都为0.55左右。

如认为本文章有错,欢迎留言讨论!

你可能感兴趣的:(机器学习)