使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络


Keras 深度学习实战(不定时更新)

 

Kera 提供了必要的库来加载数据集,并将其划分成用于微调网络的训练集 X_train,
以及用于评估性能的测试集 X_test 。数据转换为支持 GPU 计算的 float 32 类型,
井归一化为[0, 1]。另外,我们将真正的标签各自加载到 Y_train、Y_test 中,
并对其进行 One-hot 编码。

Keras 配置

https://keras-cn.readthedocs.io/en/latest/preprocessing/image/

data_format:字符串,“channel_first”或“channel_last”之一,代表图像的通道维的位置。
该参数是Keras 1.x中的image_dim_ordering,“channel_last”对应原本的“tf”,“channel_first”对应原本的“th”。
以128x128的RGB图像为例,“channel_first”应将数据组织为(3,128,128),而“channel_last”应将数据组织为(128,128,3)。
该参数的默认值是~/.keras/keras.json中设置的值,若从未设置过,则为“channel_last”

{
    "floatx": "float32",
    "epsilon": 1e-07,
    "backend": "tensorflow",
    "image_data_format": "channels_last"
}

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第1张图片


 查看mnist文件的位置

在from keras.datasets import mnist 一行上 点击 mnist 进入 mnist.py

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第2张图片


使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第3张图片

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第4张图片


keras_MINST_V1.py

from __future__ import print_function
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
from keras.utils import np_utils

import matplotlib.pyplot as plt

np.random.seed(1671)  # for reproducibility

# network and training
NB_EPOCH = 200
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10   # number of outputs = number of digits
OPTIMIZER = SGD() # SGD optimizer, explained later in this chapter
N_HIDDEN = 128
VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATION

# data: shuffled and split between train and test sets
#
(X_train, y_train), (X_test, y_test) = mnist.load_data()

#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
RESHAPED = 784
#
X_train = X_train.reshape(60000, RESHAPED)
X_test = X_test.reshape(10000, RESHAPED)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')

# normalize 
#
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)

# 10 outputs
# final stage is softmax

model = Sequential()
model.add(Dense(NB_CLASSES, input_shape=(RESHAPED,)))
model.add(Activation('softmax'))

model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer=OPTIMIZER,
              metrics=['accuracy'])

history = model.fit(X_train, Y_train,
                    batch_size=BATCH_SIZE, epochs=NB_EPOCH,
                    verbose=VERBOSE, validation_split=VALIDATION_SPLIT)
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("\nTest score:", score[0])
print('Test accuracy:', score[1])

# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

执行情况

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第5张图片

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第6张图片


keras_MINST_V2.py 

from __future__ import print_function
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
from keras.utils import np_utils

import matplotlib.pyplot as plt

np.random.seed(1671)  # for reproducibility

# network and training
NB_EPOCH = 20
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10   # number of outputs = number of digits
OPTIMIZER = SGD() # optimizer, explained later in this chapter
N_HIDDEN = 128
VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATION

# data: shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
RESHAPED = 784
#
X_train = X_train.reshape(60000, RESHAPED)
X_test = X_test.reshape(10000, RESHAPED)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')

# normalize 
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)

# M_HIDDEN hidden layers
# 10 outputs
# final stage is softmax

model = Sequential()
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer=OPTIMIZER,
              metrics=['accuracy'])

history = model.fit(X_train, Y_train,
                    batch_size=BATCH_SIZE, epochs=NB_EPOCH,
                    verbose=VERBOSE, validation_split=VALIDATION_SPLIT)

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("\nTest score:", score[0])
print('Test accuracy:', score[1])

# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

执行情况

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第7张图片

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第8张图片

 


keras_MINST_V3.py

from __future__ import print_function
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.utils import np_utils

import matplotlib.pyplot as plt

np.random.seed(1671)  # for reproducibility

# network and training
NB_EPOCH = 250
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10   # number of outputs = number of digits
OPTIMIZER = SGD() # optimizer, explained later in this chapter
N_HIDDEN = 128
VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATION
DROPOUT = 0.3

# data: shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
RESHAPED = 784
#
X_train = X_train.reshape(60000, RESHAPED)
X_test = X_test.reshape(10000, RESHAPED)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')

# normalize 
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)

# M_HIDDEN hidden layers
# 10 outputs
# final stage is softmax

model = Sequential()
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer=OPTIMIZER,
              metrics=['accuracy'])

history = model.fit(X_train, Y_train,
                    batch_size=BATCH_SIZE, epochs=NB_EPOCH,
                    verbose=VERBOSE, validation_split=VALIDATION_SPLIT)

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("\nTest score:", score[0])
print('Test accuracy:', score[1])

# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

执行情况

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第9张图片

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第10张图片


keras_MINST_V4.py

from __future__ import print_function
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import RMSprop
from keras.utils import np_utils

import matplotlib.pyplot as plt

np.random.seed(1671)  # for reproducibility

# network and training
NB_EPOCH = 20
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10   # number of outputs = number of digits
OPTIMIZER = RMSprop() # optimizer, explainedin this chapter
N_HIDDEN = 128
VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATION
DROPOUT = 0.3

# data: shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
RESHAPED = 784
#
X_train = X_train.reshape(60000, RESHAPED)
X_test = X_test.reshape(10000, RESHAPED)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')

# normalize 
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)

# M_HIDDEN hidden layers
# 10 outputs
# final stage is softmax

model = Sequential()
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer=OPTIMIZER,
              metrics=['accuracy'])

history = model.fit(X_train, Y_train,
                    batch_size=BATCH_SIZE, epochs=NB_EPOCH,
                    verbose=VERBOSE, validation_split=VALIDATION_SPLIT)

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("\nTest score:", score[0])
print('Test accuracy:', score[1])

# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

执行情况

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第11张图片

使用 Keras 定义简单神经网络来识别 MNIST 手写数字的网络_第12张图片

 

 

 

 

 

 

 

 

你可能感兴趣的:(Keras)