给定n和m,n表示点的数量,m表示边的数量。
再给m条边(u,v,w)。w表示割该边的花费。注意是无向图,反向边的容量与正向边一致。将结点1看作源点,结点2看作汇点,求一组最小割边集。
跑最大流。跑完的残余网络中,将源点S能到达的点看作S集,其他点看作T集。如果边的一个点属于S集,另一个点属于T集,那么该边属于最小割边集。
#include
#include
#include
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int maxn = 50+5;
const int maxm = 500 + 50;
using namespace std;
int n,m;
// 图
struct Edge{
int v, cap, flow, next;
};
Edge edges[maxm*2];
int head[maxn], cnt;
int dis[maxn]; // 分层的编号
int cur[maxn]; // 当前弧,重要优化!!!
void init(){
cnt = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v, int cap){
edges[cnt].v = v; edges[cnt].cap = cap; edges[cnt].flow = 0;
edges[cnt].next = head[u]; head[u] = cnt++;
// 反向弧
edges[cnt].v = u; edges[cnt].cap = cap; edges[cnt].flow = 0;
edges[cnt].next = head[v]; head[v] = cnt++;
}
// 分层
int Q[maxn]; // 模拟队列
bool bfs(int s, int t){
memset(dis, -1, sizeof(dis));
dis[s] = 0;
int front = 0, rear = 0;
Q[rear++] = s;
while(front < rear){
int x = Q[front++];
if(x == t) return true;
for(int i = head[x]; i != -1; i = edges[i].next){
Edge& e = edges[i];
if(dis[e.v] == -1&&e.cap > e.flow){
dis[e.v] = dis[x] + 1;
Q[rear++] = e.v;
}
}
}
return dis[t] != -1;
}
int dfs(int s, int t, int cur_flow){
if(s == t||cur_flow == 0) return cur_flow;
int ans = 0;
for(int& i = cur[s]; i != -1; i = edges[i].next){
int c = i;
Edge e = edges[c];
if(dis[e.v] == dis[s] + 1&&e.cap > e.flow){
int a2 = min(cur_flow, e.cap-e.flow);
int w = dfs(e.v, t, a2);
edges[c].flow += w;
edges[c^1].flow -= w;
cur_flow -= w;
ans += w;
if(cur_flow <= 0) break;
}
}
return ans;
}
// 最大流
int Dinic(int s, int t){
int ans = 0;
while(bfs(s,t)){
memcpy(cur, head, sizeof(head));
ans += dfs(s,t,INF);
}
return ans;
}
int vis[maxn];
void find_S(int u){
vis[u] = 1;
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].v;
if(vis[v] || edges[i].cap == edges[i].flow) continue;
find_S(v);
}
}
int x[maxm], y[maxm];
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&m) == 2){
if(n == 0&&m == 0) break;
init();
//for(int i = 1; i <= n; ++i) addEdge(i, i+n, 1);
for(int i = 0; i < m; ++i){
int c; scanf("%d%d%d",&x[i],&y[i],&c);
addEdge(x[i], y[i],c);
}
LL c;
int s = 1, t = 2;
Dinic(s, t);
memset(vis, 0, sizeof(vis));
find_S(s);
for(int i = 0; i < m; ++i){
int u = x[i], v = y[i];
if((!vis[u]&&vis[v]) || (vis[u]&&!vis[v])) printf("%d %d\n",u,v);
}printf("\n");
}
fclose(stdin);
return 0;
}