最近在压测一个接口,使用如下方法获取时间差:
long start = System.currentTimeMillis();
object.methodinvoke();
long end = System.currentTimeMillis();
long cost= end - start;
打印的日志记录时间差,后来发现日志里出现了很多负数,感到很奇怪,查了资料,发现这个方法里面有坑!
来看看currentTimeMillis()这个方法的源码注释:
/**
* Returns the current time in milliseconds. Note that
* while the unit of time of the return value is a millisecond,
* the granularity of the value depends on the underlying
* operating system and may be larger. For example, many
* operating systems measure time in units of tens of
* milliseconds.
*
* See the description of the class Date
for
* a discussion of slight discrepancies that may arise between
* "computer time" and coordinated universal time (UTC).
*
* @return the difference, measured in milliseconds, between
* the current time and midnight, January 1, 1970 UTC.
* @see java.util.Date
*/
public static native long currentTimeMillis();
这个方法返回的是当前系统时间的微秒数。所以,初步定位为获取系统时间出问题了。测试机使用的是windows系统,查看系统时间设置,发现有个Internet时间设置,会同步Internet时间服务器的时间。因此,当同步新的时间比之前的时间小时,就导致了时间差出现负数。这里先关闭网络时间同步,然后再压测,发现正常了!
不过,实际开发中,使用System.currentTimeMillis()计算时间差,也并不靠谱。因为获取的值的颗粒度取决于底层的操作系统。例如,很多操作系统的时间颗粒度是10微妙,而且这个时间又可能受NTP影响而产生微调,当时间差小于此值时,时间差的计算会很不靠谱。
高并发下System.currentTimeMillis()需慎用,比如当使用System.currentTimeMillis()给生成文件命名时,可能就会出现同名情况。
正确的操作应该是这个样子的,使用System.nanoTime():
long start = System.nanoTime();
object.methodinvoke();
long end = System.nanoTime();
long cost= end - start;
来看看nanoTime()的源码注释:
/**
* Returns the current value of the running Java Virtual Machine's
* high-resolution time source, in nanoseconds.
*
* This method can only be used to measure elapsed time and is
* not related to any other notion of system or wall-clock time.
* The value returned represents nanoseconds since some fixed but
* arbitrary origin time (perhaps in the future, so values
* may be negative). The same origin is used by all invocations of
* this method in an instance of a Java virtual machine; other
* virtual machine instances are likely to use a different origin.
*
*
This method provides nanosecond precision, but not necessarily
* nanosecond resolution (that is, how frequently the value changes)
* - no guarantees are made except that the resolution is at least as
* good as that of {@link #currentTimeMillis()}.
*
*
Differences in successive calls that span greater than
* approximately 292 years (263 nanoseconds) will not
* correctly compute elapsed time due to numerical overflow.
*
*
The values returned by this method become meaningful only when
* the difference between two such values, obtained within the same
* instance of a Java virtual machine, is computed.
*
*
For example, to measure how long some code takes to execute:
*
{@code
* long startTime = System.nanoTime();
* // ... the code being measured ...
* long estimatedTime = System.nanoTime() - startTime;}
*
* To compare two nanoTime values
*
{@code
* long t0 = System.nanoTime();
* ...
* long t1 = System.nanoTime();}
*
* one should use {@code t1 - t0 < 0}, not {@code t1 < t0},
* because of the possibility of numerical overflow.
*
* @return the current value of the running Java Virtual Machine's
* high-resolution time source, in nanoseconds
* @since 1.5
*/
public static native long nanoTime();
nanoTime()返回的是JVM运行的纳秒数,它只依赖于当前的jvm,并且不会出现同步的情况。所以在计算时间差时是准确的。
另外,在计算当前日期的时候是要使用currentTimeMillis()的,因为它是相对于 midnight, January 1, 1970 UTC的时间长度,而nanoTime()是相对于jvm的运行时间,这个时间是不确定的。