设 A,B A , B 为任意的两个集合,称
为 A A 与 B B 的无序积,记作A & B A & B
一个无向图 G G 是一个有序的二元组 <V,E> < V , E > ,其中
一个有向图 D D 是一个有序的二元组 <V,E> < V , E > ,其中
无向图和有向图统称为图,有时用 G G 泛指图
用 V(G),E(G) V ( G ) , E ( G ) 分别表示 G G 的顶点集和边集, |V(G)|,|E(G)| | V ( G ) | , | E ( G ) | 分别是 G G 的顶点数和边数。
顶点数称作图的阶, n n 个顶点的图称作n阶图
一条边也没有的图称作零图
n n 阶零图记作 Nn N n
一阶零图 N1 N 1 称作平凡图。平凡图只有一个顶点,没有边
顶点集为空集的图称为空图,记作 ∅ ∅
当用图形表示图是,如果给每一个顶点和每一条边指定一个符号(字母或数字,当然字母还可以带下标),则称这样的图为标定图,否则称为非标定图
将有向图的各条有向边改成无向边后所得到的无向图称作这个有向图的基图
设 G=<V,E> G =< V , E > 为无向图, ek=(vi,vj)∈E e k = ( v i , v j ) ∈ E ,称 vi,vj v i , v j 为 ek e k 的端点, ek e k 与 vi(vj) v i ( v j ) 关联。
若 vi≠vj v i ≠ v j ,则称 ek e k 与 vi(vj) v i ( v j ) 的关联次数为 1 1
若 vi=vj v i = v j ,则称 ek e k 与 vi(vj) v i ( v j ) 的关联次数为 2 2
如果顶点 vl v l 不与边 ek e k 关联,则称 ek e k 与 vl v l 的关联次数为 0 0
设 D=<V,E> D =< V , E > 为有向图, ek=<vi,vj>∈E e k =< v i , v j >∈ E ,称 vi,vj v i , v j 为 ek e k 的端点, vi v i 为 ek e k 的始点, vj v j 为 ek e k 的终点, ek e k 与 vi(vj) v i ( v j ) 关联。
无向图中若两个顶点之间有一条边相连接,则称这两个顶点相邻。若两条边至少有一个公共端点,则称这两条边相邻。
有向图中若两个顶点之间有一条有向边,则称这两个顶点相邻,若两条边中一条边的终点是另一条边的始点,则称这两条边相邻
图中没有边关联的顶点称作孤立点
设无向图 G=<V,E>,∀v∈V G =< V , E > , ∀ v ∈ V
为 v v 的邻域
为 v v 的闭邻域
为 v v 的关联集
设有向图 D=<V,E>,∀v∈V D =< V , E > , ∀ v ∈ V
Γ+D(v)={u|u∈V∧<v,u>∈E∧u≠v} Γ D + ( v ) = { u | u ∈ V ∧ < v , u >∈ E ∧ u ≠ v }
为 v v 的后继元素
在无向图中,如果关联一对顶点的无向边多于 1 1 条,在有向图中如果关联一对顶点的无向边多于 1 1 条,且这些边的始点与终点相同(也就是它们的方向相同),则称这些边为平行边
平行边的条数称作重数
不含平行边也不含环的图称作简单图
含有平行边的图称作多重图
设 G=<V,E> G =< V , E > 为无向图, ∀v∈V ∀ v ∈ V ,称 v v 作为边的端点的次数为 v v 的度数,简称为度,记作 dG(v) d G ( v ) 。
最大度
最小度
设 D=<V,E> D =< V , E > 为有向图,
∀v∈V ∀ v ∈ V ,称 v v 作为始点的次数为 v v 的出度,记作 d+D(v) d D + ( v )
称 v v 作为终点的次数为 v v 的入度,记作 d−D(v) d D − ( v )
称 d+D(v)+d−D(v) d D + ( v ) + d D − ( v ) 为 v v 的度数,记作 dD(v) d D ( v )
称度数为 1 1 的顶点为悬挂顶点,与它相关联的边称作悬挂边
度为偶数(奇数)的顶点称作偶度(奇度)顶点
在任何无向图中,所有顶点的度数之和等于边数的 2 2 倍
在任何有向图中,所有顶点的度数之和等于边数的 2 2 倍;所有顶点的入度之和等于所有顶点的出度之和,都等于边数
任何图中,奇度顶点的个数是偶数
非负整数列 d=(d1,d2,⋯,dn) d = ( d 1 , d 2 , ⋯ , d n ) 是可图化的当且仅当 ∑ni=1di ∑ i = 1 n d i 为偶数
设 G G 为任意 n n 阶无向简单图,则 Δ(G)≤n−1 Δ ( G ) ≤ n − 1
记作 G1≅G2 G 1 ≅ G 2
图的同构关系是等价关系,具有自反性、对称性、传递性
设 G G 为 n n 阶无向简单图,若 G G 中每个顶点均与其余的 n−1 n − 1 个顶点相邻,则称 G G 为 n n 阶无向完全图,简称为 n n 阶完全图,记作 Kn(n≥1) K n ( n ≥ 1 )
设 D D 为 n n 阶有向简单图,若 D D 中每个顶点都邻接到其余的 n−1 n − 1 个顶点,则称 D D 为 n n 阶有向完全图
设 D D 为 n n 阶有向简单图,若 D D 的基图为 n n 阶无向完全图 Kn K n ,则称 D D 为n阶竞赛图
设 G G 为 n n 阶无向简单图,若 ∀v∈V(G) ∀ v ∈ V ( G ) ,均有 d(v)=k d ( v ) = k ,则称 G G 为k-正则图
设 G=<V,E>,V1⊂V∧V1≠∅ G =< V , E > , V 1 ⊂ V ∧ V 1 ≠ ∅ ,则称以 V1 V 1 为顶点集,以 G G 中两个端点都在 V1 V 1 中的边组成边集 E1 E 1 的图为 G G 的 V1 V 1 导出的子图,记作 G[V1] G [ V 1 ]
设 E1⊂E∧E1≠∅ E 1 ⊂ E ∧ E 1 ≠ ∅ ,则称以 E1 E 1 为边集,以 E1 E 1 中边关联的顶点为顶点集 V1 V 1 的图为 G G 的 E1 E 1 导出的子图,记作 G[E1] G [ E 1 ]
设 G=<V,E> G =< V , E > 为 n n 阶无向简单图,令 E¯={(u,v)|u∈V∧v∈V∧u≠v∧(u,v)∉E} E ¯ = { ( u , v ) | u ∈ V ∧ v ∈ V ∧ u ≠ v ∧ ( u , v ) ∉ E } ,称 G¯=<V,E¯> G ¯ =< V , E ¯ > 为 G G 的补图
若图 G≅G¯ G ≅ G ¯ ,则称 G G 为自补图
设 e=(u,v)∈E e = ( u , v ) ∈ E ,用 G∖e G ∖ e 表示从 G G 中删除 e e 后,将 e e 的两个端点 u,v u , v 用一个新的顶点 w w 代替,并使 w w 关联除 e e 以外 u,v u , v 关联的所有边,称作 e e 的收缩
在 n n 阶图 G G 中,若从顶点 u u 到 v v (u \ne v)存在通路,则从 u u 到 v v 存在长度小于等于 n−1 n − 1 的通路
在 n n 阶图 G G 中,若从顶点 u u 到 v v (u \ne v)存在回路,则从 u u 到 v v 存在长度小于等于 n−1 n − 1 的回路
在 n n 阶图 G G 中,若从顶点 u u 到 v v (u \ne v)存在通路,则从 u u 到 v v 存在长度小于等于 n−1 n − 1 的初级通路
在 n n 阶图 G G 中,若从顶点 u u 到 v v (u \ne v)存在回路,则从 u u 到 v v 存在长度小于等于 n−1 n − 1 的初级回路
设无向图 G=<V,E> G =< V , E > , Vi V i 是 V V 关于顶点之间的连通关系 ∼ ∼ 的一个等价类,称导出子图 G[Vi] G [ V i ] 为 G G 的一个连通分支
G G 的连通分支数记作 p(G) p ( G )
设无向图 G=<V,E> G =< V , E >
若存在 V′⊂V V ′ ⊂ V 使得 p(G−V′)>p(G) p ( G − V ′ ) > p ( G ) ,且对于任意的 V′′⊂V′ V ″ ⊂ V ′ ,均有 p(G−V′′)=p(G) p ( G − V ″ ) = p ( G ) ,则称 V′ V ′ 是 G G 的点割集
若 V′={v} V ′ = { v } ,则称 v v 为割点。
设无向图 G=<V,E> G =< V , E >
若存在 E′⊂E E ′ ⊂ E 使得 p(G−E′)>p(G) p ( G − E ′ ) > p ( G ) ,且对于任意的 E′′⊂E′ E ″ ⊂ E ′ ,均有 p(G−E′′)=p(G) p ( G − E ″ ) = p ( G ) ,则称 E′ E ′ 是 G G 的边割集或简称割集
若 E′={e} E ′ = { e } ,则称 e e 为割边或桥。
设 G G 为无向连通图且不是完全图,则称
为点连通度,简称连通度
若 κ(G)≥k κ ( G ) ≥ k ,则称 G G 为k-连通图
设 G G 为无向连通图,则称
为边连通度
规定非连通图的边连通度为 0 0
若 λ(G)≥r λ ( G ) ≥ r ,则称 G G 为r边-连通图
对于任何无向图 G G ,有
若有向图 D=<V,E> D =< V , E > 的基图是连通图,则称 D D 为弱连通图,简称连通图
若 ∀vi,vj∈V,vi→vj与vj→vi ∀ v i , v j ∈ V , v i → v j 与 v j → v i 至少成立其一,则称 D D 为单向连通图
有向图 D D 是单向连通图当且仅当 D D 中存在经过每个顶点至少一次的通路
若 ∀vi,vj∈V, ∀ v i , v j ∈ V , 均有 vi↔vj v i ↔ v j ,则称 D D 为强连通图
有向图 D D 是强连通图当且仅当 D D 中存在经过每个顶点至少一次的回路
设 G=<V,E> G =< V , E > 为 n n 阶无向图, Γ Γ 为一条路径。若 Γ Γ 的始点与终点都不与 Γ Γ 外的顶点相邻,则称 Γ Γ 为一条极大路径
设无向图 G=<V,E> G =< V , E > ,若能将 V V 划分成 V1 V 1 ,和 V2 V 2 (即 V1∪V2=V,V1∩V2=∅,V1=∅V2=∅ V 1 ∪ V 2 = V , V 1 ∩ V 2 = ∅ , V 1 = ∅ V 2 = ∅ ),使得 G G 中每条边的两个端点都是一个属于 V1 V 1 ,另一个属于 V2 V 2 ,则称 G G 为二部图(或二分图、偶图),称 V1 V 1 和 V2 V 2 为互补顶点子集,常将二部图 G G 记作 <V1,V2,E> < V 1 , V 2 , E >
n(n≥2) n ( n ≥ 2 ) 阶无向图 G G 是二部图当且仅当 G G 中无奇圈
若 G G 是简单二部图, V1 V 1 中的每个顶点均为 V2 V 2 中的所有顶点相邻,则称 G G 为完全二部图记为 Kr,s K r , s ,其中 r=|V1|,s=|V2| r = | V 1 | , s = | V 2 |
n(n≥2) n ( n ≥ 2 ) 阶零图为二部图
M(D) M ( D )
A(D) A ( D )
A A 的 l l 次幂 Al(l≥1) A l ( l ≥ 1 ) 中的元素 a(l)ij a i j ( l ) 为 D D 中 vi v i 到 vj v j 长度为 l l 的通路数
a(l)ii a i i ( l ) 为 D D 中 vi v i 到自身长度为 l l 的回路数
称以 E1⊕E2 E 1 ⊕ E 2 为边集,以 E1⊕E2 E 1 ⊕ E 2 中边关联的顶点组成的集合为顶点集的图为 G1 G 1 与 G2 G 2 的环合,记作 G1⊕G2 G 1 ⊕ G 2