这里有一个关系
首先看hash的结构
typedef struct dictht {
// 哈希表数组
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值
// 总是等于 size - 1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
} dictht;
table 属性是一个数组, 数组中的每个元素都是一个指向 dict.h/dictEntry 结构的指针, 每个 dictEntry 结构保存着一个键值对。size 属性记录了哈希表的大小, 也即是 table 数组的大小, 而 used 属性则记录了哈希表目前已有节点(键值对)的数量。sizemask 属性的值总是等于 size - 1 , 这个属性和哈希值一起决定一个键应该被放到 table 数组的哪个索引上面。
再看dictEntry 结构
typedef struct dictEntry {
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;
key 属性保存着键值对中的键, 而 v 属性则保存着键值对中的值, 其中键值对的值可以是一个指针, 或者是一个 uint64_t 整数, 又或者是一个 int64_t 整数。next 属性是指向另一个哈希表节点的指针, 这个指针可以将多个哈希值相同的键值对连接在一次, 以此来解决键冲突(collision)的问题。
最后看字典dict结构
typedef struct dict {
// 类型特定函数
dictType *type;
// 私有数据
void *privdata;
// 哈希表
dictht ht[2];
// rehash 索引
// 当 rehash 不在进行时,值为 -1
int rehashidx; /* rehashing not in progress if rehashidx == -1 */
} dict;
type 属性和 privdata 属性是针对不同类型的键值对, 为创建多态字典而设置的:
typedef struct dictType {
// 计算哈希值的函数
unsigned int (*hashFunction)(const void *key);
// 复制键的函数
void *(*keyDup)(void *privdata, const void *key);
// 复制值的函数
void *(*valDup)(void *privdata, const void *obj);
// 对比键的函数
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
// 销毁键的函数
void (*keyDestructor)(void *privdata, void *key);
// 销毁值的函数
void (*valDestructor)(void *privdata, void *obj);
} dictType;
ht 属性是一个包含两个项的数组, 数组中的每个项都是一个 dictht 哈希表, 一般情况下, 字典只使用 ht[0] 哈希表, ht[1] 哈希表只会在对 ht[0] 哈希表进行 rehash 时使用。
除了 ht[1] 之外, 另一个和 rehash 有关的属性就是 rehashidx : 它记录了 rehash 目前的进度, 如果目前没有在进行 rehash , 那么它的值为 -1 。
图 4-3 展示了一个普通状态下(没有进行 rehash)的字典:
可参考链接:https://www.jianshu.com/p/e8ccef2b5e93
dict底层是通过hash实现的,对hash有了解的都知道,需要选择哈希算法。dict中dictType就可以指定哈希函数,通过键值,可以计算hash值.计算hash值之后,可以通过sizemake计算出索引,将数据放在相应的位置
# 使用字典设置的哈希函数,计算键 key 的哈希值
hash = dict->type->hashFunction(key);
# 使用哈希表的 sizemask 属性和哈希值,计算出索引值
# 根据情况不同, ht[x] 可以是 ht[0] 或者 ht[1]
index = hash & dict->ht[x].sizemask;
当字典被用作数据库的底层实现, 或者哈希键的底层实现时, Redis 使用 MurmurHash2 算法来计算键的哈希值。
MurmurHash 算法最初由 Austin Appleby 于 2008 年发明, 这种算法的优点在于, 即使输入的键是有规律的, 算法仍能给出一个很好的随机分布性, 并且算法的计算速度也非常快。
MurmurHash 算法目前的最新版本为 MurmurHash3 , 而 Redis 使用的是 MurmurHash2 , 关于 MurmurHash 算法的更多信息可以参考该算法的主页: http://code.google.com/p/smhasher/ 。
当有两个或以上数量的键被分配到了哈希表数组的同一个索引上面时, 我们称这些键发生了冲突(collision)。
Redis 的哈希表使用链地址法(separate chaining)来解决键冲突: 每个哈希表节点都有一个 next 指针, 多个哈希表节点可以用 next 指针构成一个单向链表, 被分配到同一个索引上的多个节点可以用这个单向链表连接起来, 这就解决了键冲突的问题。
**因为 dictEntry 节点组成的链表没有指向链表表尾的指针, 所以为了速度考虑, 程序总是将新节点添加到链表的表头位置(复杂度为 O(1)), 排在其他已有节点的前面。**一定要注意,是插入到表头。