spark 累加历史主要用到了窗口函数,而进行全部统计,则需要用到rollup函数
1 应用场景:
1、我们需要统计用户的总使用时长(累加历史)
2、前台展现页面需要对多个维度进行查询,如:产品、地区等等
3、需要展现的表格头如: 产品、2015-04、2015-05、2015-06
2 原始数据:
product_code | event_date | duration |
---|---|---|
1438 | 2016-05-13 | 165 |
1438 | 2016-05-14 | 595 |
1438 | 2016-05-15 | 105 |
1629 | 2016-05-13 | 12340 |
1629 | 2016-05-14 | 13850 |
1629 | 2016-05-15 | 227 |
3 业务场景实现
3.1 业务场景1:累加历史:
如数据源所示:我们已经有当天用户的使用时长,我们期望在进行统计的时候,14号能累加13号的,15号能累加14、13号的,以此类推
3.1.1 spark-sql实现
//spark sql 使用窗口函数累加历史数据
sqlContext.sql(
"""
select pcode,event_date,sum(duration) over (partition by pcode order by event_date asc) as sum_duration
from userlogs_date
""").show
+-----+----------+------------+
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13| 165|
| 1438|2016-05-14| 760|
| 1438|2016-05-15| 865|
| 1629|2016-05-13| 12340|
| 1629|2016-05-14| 26190|
| 1629|2016-05-15| 26417|
+-----+----------+------------+
3.1.2 dataframe实现
//使用Column提供的over 函数,传入窗口操作
import org.apache.spark.sql.expressions._
val first_2_now_window = Window.partitionBy("pcode").orderBy("event_date")
df_userlogs_date.select(
$"pcode",
$"event_date",
sum($"duration").over(first_2_now_window).as("sum_duration")
).show
+-----+----------+------------+
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13| 165|
| 1438|2016-05-14| 760|
| 1438|2016-05-15| 865|
| 1629|2016-05-13| 12340|
| 1629|2016-05-14| 26190|
| 1629|2016-05-15| 26417|
+-----+----------+------------+
3.1.3 扩展 累加一段时间范围内
实际业务中的累加逻辑远比上面复杂,比如,累加之前N天,累加前N天到后N天等等。以下我们来实现:
3.1.3.1 累加历史所有:
select pcode,event_date,sum(duration) over (partition by pcode order by event_date asc) as sum_duration from userlogs_date
select pcode,event_date,sum(duration) over (partition by pcode order by event_date asc rows between unbounded preceding and current row) as sum_duration from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween(Long.MinValue,0)
Window.partitionBy("pcode").orderBy("event_date")
上边四种写法完全相等
3.1.3.2 累加N天之前,假设N=3
//如果,不想要分区,想从每月的第一天累加的当前天 可以去掉partition
select pcode,event_date,sum(duration) over (partition by pcode order by
event_date asc rows between 3 preceding and current row) as sum_duration
from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween(-3,0)
3.1.3.3 累加前N天,后M天: 假设N=3 M=5
select pcode,event_date,sum(duration) over (partition by pcode order by
event_date asc rows between 3 preceding and 5 following ) as sum_duration
from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween(-3,5)
3.1.3.4 累加该分区内所有行
select pcode,event_date,sum(duration) over (partition by pcode order by
event_date asc rows between unbounded preceding and unbounded following )
as sum_duration from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween
(Long.MinValue,Long.MaxValue)
总结如下:
preceding:用于累加前N行(分区之内)。若是从分区第一行头开始,则为 unbounded。 N为:相对当前行向前的偏移量
following :与preceding相反,累加后N行(分区之内)。若是累加到该分区结束,则为 unbounded。N为:相对当前行向后的偏移量
current row:顾名思义,当前行,偏移量为0
说明:上边的前N,后M,以及current row均会累加该偏移量所在行
3.1.3.4 实测结果
累加历史:分区内当天及之前所有 写法
1:select pcode,event_date,sum(duration) over (partition by pcode order by
event_date asc) as sum_duration from userlogs_date
+-----+----------+------------+
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13| 165|
| 1438|2016-05-14| 760|
| 1438|2016-05-15| 865|
| 1629|2016-05-13| 12340|
| 1629|2016-05-14| 26190|
| 1629|2016-05-15| 26417|
+-----+----------+------------+
累加历史:分区内当天及之前所有 写法2:
select pcode,event_date,sum(duration) over (partition by pcode order by
event_date asc rows between unbounded preceding and current row) as
sum_duration from userlogs_date
+-----+----------+------------+
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13| 165|
| 1438|2016-05-14| 760|
| 1438|2016-05-15| 865|
| 1629|2016-05-13| 12340|
| 1629|2016-05-14| 26190|
| 1629|2016-05-15| 26417|
+-----+----------+------------+
累加当日和昨天:
select pcode,event_date,sum(duration) over (partition by pcode order by
event_date asc rows between 1 preceding and current row) as sum_duration
from userlogs_date
+-----+----------+------------+
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13| 165|
| 1438|2016-05-14| 760|
| 1438|2016-05-15| 700|
| 1629|2016-05-13| 12340|
| 1629|2016-05-14| 26190|
| 1629|2016-05-15| 14077|
+-----+----------+------------+
累加当日、昨日、明日:
select pcode,event_date,sum(duration) over (partition by pcode order by
event_date asc rows between 1 preceding and 1 following ) as sum_duration
from userlogs_date
+-----+----------+------------+
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13| 760|
| 1438|2016-05-14| 865|
| 1438|2016-05-15| 700|
| 1629|2016-05-13| 26190|
| 1629|2016-05-14| 26417|
| 1629|2016-05-15| 14077|
+-----+----------+------------+
累加分区内所有:当天和之前之后所有:
select pcode,event_date,sum(duration) over (partition by pcode order by
event_date asc rows between unbounded preceding and unbounded following )
as sum_duration from userlogs_date
+-----+----------+------------+
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13| 865|
| 1438|2016-05-14| 865|
| 1438|2016-05-15| 865|
| 1629|2016-05-13| 26417|
| 1629|2016-05-14| 26417|
| 1629|2016-05-15| 26417|
+-----+----------+------------+
3.2 业务场景2:统计全部
3.2.1 spark sql实现
//spark sql 使用rollup添加all统计
sqlContext.sql(
"""
select pcode,event_date,sum(duration) as sum_duration
from userlogs_date_1
group by pcode,event_date with rollup
order by pcode,event_date
""").show()
+-----+----------+------------+
|pcode|event_date|sum_duration|
+-----+----------+------------+
| null| null| 27282|
| 1438| null| 865|
| 1438|2016-05-13| 165|
| 1438|2016-05-14| 595|
| 1438|2016-05-15| 105|
| 1629| null| 26417|
| 1629|2016-05-13| 12340|
| 1629|2016-05-14| 13850|
| 1629|2016-05-15| 227|
+-----+----------+------------