- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 【PyCharm 使用技巧】PyCharm 基本功能详解 || 【Jupyter Notebook】如何进入其它盘,如D盘?H盘?|| 【机器学习】聚类算法详解及其应用 || 道路交通流量模拟预测
追光者♂
Python从入门到人工智能工具技巧解决办法百题千解计划(项目实战案例)PyCharm使用技巧Jupyter如何进入其它盘聚类算法练习PyCharm详解时空交通流预测模拟
作者主页:追光者♂个人简介:在读计算机专业硕士研究生、CSDN-人工智能领域新星创作者、2022年CSDN博客之星人工智能领域TOP4、阿里云社区专家博主【无限进步,一起追光!】欢迎点赞收藏⭐留言本篇的目录一,是请看目录四——PyCharm基础设置回顾的续篇,继续记录讲解PyCharm的基本功能。目录二回顾了在使用Jupyter时的问题。目录三练习了机器学习算法中的聚类算法。目录一、再次了解PyC
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- GBDT:梯度提升决策树——集成学习中的预测利器
大千AI助手
人工智能Python#OTHER决策树集成学习算法GBDT梯度提升人工智能机器学习
核心定位:一种通过串行集成弱学习器(决策树)、以梯度下降方式逐步逼近目标函数的机器学习算法,在结构化数据预测任务中表现出色。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、GBDT是什么?全称:GradientBoostingDecisionTree(梯度提升决策树)本质:Boosting集成学
- 机器学习算法-逻辑回归模型在交通领域的应用
是一个Bug
机器学习算法逻辑回归
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档逻辑回归模型在交通领域的应用:车流数量和平均速度之间的关系前言结果分析代码分析逻辑回归可视化:交通拥堵预测的动态建模过程一、交通数据生成与预处理二、逻辑回归核心算法实现三、动态可视化:决策边界的演变过程四、特征标准化与模型评估五、实验结果与模型解读六、拓展思考:逻辑回归的局限性结语:从代码到交通智能前言紧接上文的逻辑回归原理分析讲一讲
- LeRobot: 让机械臂接入大模型
小众AI
AI开源人工智能AI编程
HuggingFace推出的开源项目LeRobot引发了业界广泛关注。这一项目通过整合最先进的机器学习算法和便捷的开发工具链,为开发者提供了一个高效、易用的机器人AI开发平台,堪称机器人领域的“Transformer时刻”。LeRobot旨在为PyTorch中的真实机器人技术提供模型、数据集和工具。目标是降低机器人技术的准入门槛,以便每个人都可以从共享数据集和预训练模型中受益。LeRobot包含最
- AI智能时代SEO优化,AISEO-人工智能搜索引擎优化
weixin_ggwwsscc
人工智能搜索引擎deepseekAIseo
AI驱动的关键词精准匹配与语义理解传统的关键词排名规则主要依赖于关键词的字面匹配,即网站内容中出现的关键词与用户搜索词完全一致或高度相似时,才有可能获得较好的排名。然而,随着AI技术在搜索引擎中的广泛应用,这一局面正在发生深刻改变。如今的搜索引擎借助自然语言处理(NLP)和机器学习算法,能够深入理解用户搜索词背后的语义和意图,实现更精准的内容匹配。AI智能时代SEO优化,AISEO-人工智能搜索引
- 机器学习15-XGBoost
吹风看太阳
机器学习机器人人工智能
XGBOOST学习笔记一、引言在机器学习的集成学习算法中,XGBoost(eXtremeGradientBoosting)凭借其高效性、可扩展性和卓越的性能,成为数据科学竞赛和工业界应用的热门选择。XGBoost本质上是一种基于梯度提升框架(GradientBoostingFramework)的机器学习算法,它通过不断拟合残差来构建多个弱学习器(通常是决策树),并将这些弱学习器进行累加,从而形成一
- 机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术
全息架构师
AI行业应用实战先锋机器学习算法深度学习
机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术引言“数据中的异常往往蕴含着最有价值的信息!从金融欺诈检测到工业设备故障预警,从网络安全到医疗诊断,异常检测技术正在守护着各个领域的安全底线。”异常检测是机器学习中极具挑战性又极具价值的领域,它旨在识别数据中与大多数实例显著不同的异常模式。本文将系统讲解异常检测的核心算法,从传统的统计方法到前沿的深度学习技术,通过金融反欺诈
- 【C语言练习】100. 使用C语言实现简单的自然语言理解算法
视睿
从零开始学习机器人c语言算法开发语言排序算法
100.使用C语言实现简单的自然语言理解算法100.使用C语言实现简单的自然语言理解算法关键词匹配算法简介示例代码:简单的关键词匹配算法代码说明示例运行扩展功能其他方法基于规则的方法统计机器学习方法C语言中统计机器学习方法概述常见统计机器学习算法的C实现贝叶斯定理基础算法核心思想常见变体实现示例(Python)优缺点优化库与工具性能与注意事项有限状态自动机(FSA)深度学习接口调用混合方法100.
- AI如何改变IT行业
保持学习ing
人工智能
AI对IT行业的变革AI技术正在深刻影响IT行业的各个方面,从自动化运维到软件开发,再到数据分析和安全防护。以下是AI改变IT行业的主要方式:自动化运维(AIOps)AI驱动的运维工具可以实时监控系统性能,预测潜在故障并自动修复。机器学习算法分析日志数据,识别异常模式,减少人工干预。例如,AI可以预测服务器负载峰值,提前分配资源避免宕机。智能软件开发AI辅助编程工具如GitHubCopilot基于
- 机器学习算法_聚类KMeans算法
TY-2025
机器学习机器学习算法聚类
一、聚类算法分析1.概念概念:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度的计算方法,会得到不同的聚类结果,常见的相似度计算方法有欧氏距离法(无监督算法)聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式2.聚类算法分类(1)根据聚类颗粒度分类个数比较多的,细聚类;个数比较多的,粗聚类(2)根据实现方法分类K-means:按照质心分类层次聚类:对数据进行逐层划
- 图像处理与机器学习项目:特征提取、PCA与分类器评估
pk_xz123456
深度学习仿真模型算法图像处理机器学习人工智能
图像处理与机器学习项目:特征提取、PCA与分类器评估项目概述本项目将完成一个完整的图像处理与机器学习流程,包括数据探索、特征提取、主成分分析(PCA)、分类器实现和评估五个关键步骤。我们将使用Python的OpenCV、scikit-learn和scikit-image库来处理图像数据并实现机器学习算法。importnumpyasnpimportmatplotlib.pyplotaspltimpo
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 机器学习之集成学习算法
文柏AI共享
机器学习集成学习算法
集成学习算法一概述二Bagging方法2.1思想2.2代表算法2.3API三Boosting方法3.1AdaBoost3.1.1思想3.1.2API3.2GBDT3.2.1思想3.2.2API3.3XGBoost3.3.1思想3.3.2API机器学习算法很多,今天和大家聊一个很强悍的算法-集成学习算法,基本上是处理复杂问题的首选.话不多说,直奔主题.一概述集成学习(EnsembleLearning
- 机器学习算法——朴素贝叶斯和特征降维
TY-2025
机器学习机器学习算法人工智能
一、常见概率计算朴素贝叶斯算法是利用概率值进行分类的一种机器学习算法概率:一种事情发生的可能性,取值在[0,1]之间条件概率:表示事件A在另外一个事件B已经发生的条件下的发生概率P(A∣B)P(A|B)P(A∣B)联合概率:表示多个条件同时成立的概率P(AB)=P(A)∗P(B∣A)=P(B)∗P(A∣B)P(AB)=P(A)*P(B|A)=P(B)*P(A|B)P(AB)=P(A)∗P(B∣A)
- ubuntu20.04安装python_Ubuntu 20.04下安装部署最新的Python 3.9
weixin_39652646
原标题:Ubuntu20.04下安装部署最新的Python3.9来自:Linux迷链接:https://www.linuxmi.com/ubuntu-20-04-python-3-9.htmlPython是世界上最流行的编程语言之一。它是一种通用语言,用于构建各种各样的应用程序,从简单的脚本到复杂的机器学习算法。由于其简单且易于学习的语法,Python是初学者和有经验的开发人员的热门选择。Pyth
- 机器学习算法种类繁多以下是主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议
zhxup606
数据结构与算法.netcore
机器学习算法种类繁多,根据任务类型主要分为监督学习、无监督学习、半监督学习和强化学习四大类。以下是对主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议。一、机器学习算法分类及详细描述1.监督学习(SupervisedLearning)监督学习使用带标签的数据(输入和输出已知)进行训练,目标是学习输入到输出的映射函数。1.1线性回归(LinearRegression)描
- 机器学习KNN算法全解析:从原理到实战
AI妈妈手把手
机器学习算法人工智能pythonKNN
大家好!今天我们来聊聊机器学习中的"懒人算法"——KNN(K-NearestNeighbors,K近邻)算法。这个算法就像个"墙头草",它不学习模型参数,而是直接根据邻居的"投票"来做决策,是不是很有趣?让我们一起来揭开它的神秘面纱吧!一、算法简介:近朱者赤,近墨者黑KNN(K-NearestNeighbors,K最近邻)是最直观的机器学习算法之一,核心思想就是“物以类聚”:一个样本的类别由其最近
- 机器学习算法实战系列:决策树与随机森林全攻略
全息架构师
AI行业应用实战先锋Python实战项目大揭秘机器学习算法决策树
机器学习算法实战系列:决策树与随机森林全攻略引言“想知道Kaggle竞赛冠军团队的秘密武器吗?决策树和随机森林算法在80%的数据科学项目中都会用到!”决策树和随机森林是机器学习中最强大、最实用的算法之一。它们不仅直观易懂,而且在处理结构化数据时往往能取得惊人的效果。本文将带你从决策树的数学原理出发,逐步深入到随机森林的工业级应用,最后通过多个实战案例巩固所学知识。准备好迎接这场机器学习的视觉盛宴了
- 使用PyGAD训练Keras模型:从入门到实践
t0_54program
大数据与人工智能keras人工智能深度学习个人开发
在机器学习领域,如何高效地训练模型是一个关键问题。PyGAD作为一个开源的Python库,为我们提供了利用遗传算法来训练机器学习算法的有力工具,特别是在训练Keras模型方面,展现出独特的优势。一、PyGAD库简介PyGAD允许开发者构建遗传算法,并用于训练各类机器学习算法。它提供了丰富的参数,能针对不同类型的问题定制遗传算法。比如在解决一些复杂的优化问题时,我们可以通过调整这些参数,使遗传算法更
- 使用MATLAB和Simulink来设计并仿真一个智能家居基于机器视觉的安全监控系统
amy_mhd
matlab智能家居开发语言
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:构建图像采集模块第三步:实现图像预处理第四步:设计背景建模与差分第五步:实现特征提取与行为识别第六步:设计响应机制第七步:搭建用户界面(可选)第八步:运行仿真并分析结果注意事项智能家居中基于机器视觉的安全监控系统通过摄像头捕捉图像,并利用图像处理和机器学习算法来分析这些图像,以实现诸如入侵检测、异常行为识别等功能。这种系统可以极大
- 【动手学机器学习】第三章模式识别与机器学习经典算法——k 近邻算法
小洛~·~
算法机器学习近邻算法python人工智能
前言本章先来讲解k近邻算法——最简单的机器学习算法,从中展开机器学习的一些基本概念和思想。或许有的读者会认为机器学习非常困难,需要庞大的模型、复杂的网络,但事实并非如此。相当多的机器学习算法都非常简单、直观,也不涉及神经网络。本章就将介绍一个最基本的分类和回归算法:k近邻(k-nearestneighbor,KNN)算法。KNN是最简单也是最重要的机器学习算法之一,它的思想可以用一句话来概括:“相
- 机器学习算法-k-means
不会敲代码的灵长类
机器学习kmeans算法机器学习
今天我们用「超市顾客分组」的例子来讲解K-means算法,从原理到实现一步步拆解,保证零基础也能懂!例子背景假设你是超市经理,手上有顾客的以下数据:顾客ID每月消费金额(元)每周到店次数130002250008335003470006520001你想把顾客分成3个群体,分别制定营销策略,该怎么做?K-means原理1.核心思想"物以类聚"——让相似特征的顾客自动聚成一类➡️通过计算距离,把数据划分
- 心脏病预测利器:基于机器学习的智能分析系统
松京焕Max
心脏病预测利器:基于机器学习的智能分析系统【下载地址】使用机器学习识别心脏病预测本项目专注于通过数据分析与机器学习算法来增强心脏病预测的能力。在当前医疗健康领域,数据驱动的方法已经成为提升疾病预防和治疗效果的关键。本项目采用真实的心脏病患者数据集,经过细致的数据清洗和预处理阶段,为模型的训练打下坚实基础项目地址:https://gitcode.com/open-source-toolkit/9a0
- Spark MLlib模型训练—分类算法 Decision tree classifier
猫猫姐
Spark实战spark-ml分类决策树
SparkMLlib模型训练—分类算法Decisiontreeclassifier决策树(DecisionTree)是一种经典的机器学习算法,广泛应用于分类和回归问题。决策树模型通过一系列的决策节点将数据划分成不同的类别,从而形成一棵树结构。每个节点表示一个特征的分裂,叶子节点代表最终的类别标签。在大数据场景下,SparkMLlib提供了对决策树的高效实现,能够处理大规模数据集并生成复杂的分类模型
- 机器学习算法-决策树
不会敲代码的灵长类
机器学习机器学习算法决策树
今天我们用一个「相亲决策」的例子来讲解决策树算法,保证你轻松理解原理和实现!决策树是什么?决策树就像玩「20个问题」猜谜游戏:你心里想一个东西(比如「苹果」)朋友通过一系列问题猜(「是水果吗?」→「是红色的吗?」→...)问的问题越精准,猜得越快!机器学习中的决策树:通过一系列「如果...那么...」的规则,把数据一步步分类。例子:用决策树决定是否相亲假设你是媒婆,手上有历史相亲数据,记录每个人的
- AIGC提示(prompt)飞升方法:走向专家之路
herosunly
大模型AIGCprompt专家之路
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了AIGC提示(prompt)飞升方法:走向专家之路,希望对学习大语言模型
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交