- 数学分析(十八)-隐函数定理及其应用1-隐函数4:隐函数极值问题
u013250861
数学分析数学分析
f′(x)=−Fx(x,y)Fy(x,y)(5)f^{\prime}(x)=-\cfrac{F_{x}(x,y)}{F_{y}(x,y)}\quad\quad(5)f′(x)=−Fy(x,y)Fx(x,y)(5)y′′=−1Fy(Fxx+2Fxyy′+Fyyy′2)=2FxFyFxy−Fy2Fxx−Fx2FyyFy3,(
- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- pytorch-数学运算
码啥码
深度学习之pytorchpytorch深度学习python
四则运算加减乘除add+sub-mul*div/a=torch.rand(3,4)b=torch.rand(4)a,b'''(tensor([[0.2384,0.5022,0.7100,0.0400],[0.1716,0.0894,0.0795,0.1456],[0.7635,0.9423,0.7649,0.3379]]),tensor([0.8526,0.8296,0.1845,0.7922])
- 青少年编程与数学 01-012 通用应用软件简介 15 人工智能助手
明月看潮生
编程与数学第01阶段青少年编程人工智能应用软件编程与数学
青少年编程与数学01-012通用应用软件简介15人工智能助手一、什么是人工智能助手二、人工智能助手的产生和发展(一)早期探索阶段(二)技术突破阶段(三)广泛应用阶段三、人工智能助手的主要功能(一)信息查询(二)日程管理(三)设备控制(四)知识问答四、人工智能助手的商业模式(一)广告收入(二)增值服务(三)数据服务(四)硬件销售五、DeepSeek(一)基本情况(二)技术水平(三)产品功能(四)市场
- 前端开发者必看:Node.js实战技巧大揭秘
大厂前端小白菜
前端开发实战node.jsvim编辑器ai
前端开发者必看:Node.js实战技巧大揭秘关键词:前端开发者、Node.js、实战技巧、模块化开发、性能优化、Express框架、Webpack摘要:本文专为前端开发者打造,旨在深入揭秘Node.js的实战技巧。首先介绍了Node.js的背景和对前端开发的重要性,接着详细阐述了Node.js的核心概念与联系、核心算法原理及具体操作步骤,通过数学模型和公式进一步加深理解。然后结合实际案例,从开发环
- 【深度学习解惑】如果用RNN实现情感分析或文本分类,你会如何设计数据输入?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn分类人工智能机器学习神经网络
以下是用RNN实现情感分析/文本分类时数据输入设计的完整技术方案:1.引言与背景介绍情感分析/文本分类是NLP的核心任务,目标是将文本映射到预定义类别(如正面/负面情感)。RNN因其处理序列数据的天然优势成为主流方案。核心挑战在于如何将非结构化的文本数据转换为适合RNN处理的数值化序列输入。2.原理解释文本到向量的转换流程:原始文本分词建立词汇表词索引映射词嵌入层序列向量关键数学表示:词嵌入表示:
- 学习AI机器学习所需的数学基础
frostmelody
机器学习小知识点人工智能学习机器学习
一、机器学习岗位的数学需求矩阵机器学习岗位研究型职位工业界职位DeepMind/Meta/Google研究部门研究科学家/研究工程师普通科技公司机器学习工程师/数据科学家需硕士/博士数学水平本科数学基础二、数学需求深度解析1.研究型职位(需深度数学)学历要求:数学/物理/计算机/统计/工程本科基础硕士/博士优先(Kaggle调查显示博士占比高)薪资关联:学历与收入呈正相关2.工业界职位(基础数学)
- 《高等数学》(同济大学·第7版)第七章 微分方程 第四节一阶线性微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第四节“一阶线性微分方程”。这是一阶微分方程中最重要、应用最广泛的一类方程,掌握它的解法对后续学习(如微分方程的应用、高阶线性微分方程)至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握“一阶线性微分方程”的定义、解法和核心思想。一、一阶线性微分方程的定义:长什么样?1.标
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 《高等数学》(同济大学·第7版)第九章 多元函数微分法及其应用第四节隐函数的求导公式
没有女朋友的程序员
高等数学
以下是将含LaTeX标记的内容转为纯文本的版本:同学们好!今天我们学习《高等数学》(同济·第7版)第九章第四节隐函数的求导公式。我会用最通俗的语言和具体例子,带你彻底理解这个核心概念。如果中途有疑问,随时提出,我们一步步解决!一、隐函数是什么?为什么需要它?1.显函数vs隐函数显函数:直接写出因变量和自变量的关系,例如:y=f(x)或z=f(x,y)隐函数:因变量和自变量的关系隐含在一个方程中,例
- 高等数学》(同济大学·第7版)第七章 微分方程 第五节可降阶的高阶微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学第七章第五节教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第五节“可降阶的高阶微分方程”。高阶微分方程(如二阶、三阶)直接求解困难,但许多方程可以通过“降阶”转化为低阶方程(如一阶方程)来求解。本节重点讲解三类可降阶的高阶微分方程,掌握它们的解法对后续学习至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握。一、可降阶高
- 《高等数学》(同济大学·第7版)第九章 多元函数微分法及其应用第三节多元复合函数的求导法则
没有女朋友的程序员
高等数学
以下是将含LaTeX标记的内容转为纯文本的版本:同学们好!今天我们学习《高等数学》(同济·第7版)第九章第三节多元复合函数求导法则。我会用“买菜路线”和“温度变化”两个生活例子,带你彻底理解这个核心概念。如果中途有疑问,随时提出,我们一步步解决!一、从买菜路线说起:为什么需要链式法则?场景:小明从家出发,先骑车到菜市场(路程x公里),再步行到超市(路程y公里)。已知:骑车速度v_x=20km/h,
- 高等数学》(同济大学·第7版)第七章 微分方程 第三节齐次方程
没有女朋友的程序员
高等数学
同学们好!今天我们学习《高等数学》第七章第三节“齐次方程”。这是微分方程中一类重要的可转化方程,掌握它的解法对后续学习(如线性微分方程)有重要意义。我会用最通俗的语言,结合大量例子,帮你彻底掌握“齐次方程”的定义、特点和解法。一、齐次方程的定义:什么是“齐次”?1.齐次方程的两种含义在微积分中,“齐次”有两种常见含义,但这里我们特指一阶微分方程中的齐次方程:若一阶微分方程可以写成以下形式:dydx
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 创意Python爱心代码
卖血买老婆
Python专栏python开发语言
目录一、用字符在控制台打印爱心图案1.1方法1:简单星号爱心说明1.2方法2:调整字符和形状二、turtle绘制爱心2.1turtle画心形及写字说明2.2动态跳动爱心三、用Matplotlib画心形曲线3.1标准心形曲线3.2LOVE动画心形(进阶)四、参数方程自定义爱心(数学美)心形参数方程公式五、更多创意:二维码嵌入、爱心表白墙六、总结完整参考目录用Python创意绘制爱心(Heart)的多
- 创意Python爱心代码分享的技术文章大纲
hshaohao
pygamepythonjavaphpc++c语言javascript
创意Python爱心代码分享的技术文章大纲引言介绍Python在创意编程中的应用,特别是图形和数学可视化方面的潜力。提及爱心代码作为经典示例,激发读者兴趣。基本爱心图案生成使用数学公式和简单图形库绘制基本爱心形状。示例代码利用matplotlib或turtle库实现。importnumpyasnpimportmatplotlib.pyplotaspltt=np.linspace(0,2*np.pi
- pytorch 要点之雅可比向量积
AI大模型教程
pytorch人工智能pythonfacebook深度学习机器学习webpack
自动微分是PyTorch深度学习框架的核心。既然是核心,就需要敲黑板、划重点学习。同时,带来另外一个重要的数学概念:雅可比向量积。PyTorch中的自动微分与雅可比向量积自动微分(AutomaticDifferentiation,AD)是深度学习框架中的关键技术之一,它使得模型训练变得更加简单和高效。且已知:PyTorch是一个广泛使用的深度学习框架,它内置了强大的自动微分功能。在本文中,我们将深
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 揭秘AI算力网络与通信中边缘计算的机器学习应用
揭秘AI算力网络与通信中边缘计算的机器学习应用关键词:AI算力网络、通信、边缘计算、机器学习、应用摘要:本文将深入探讨AI算力网络与通信中边缘计算的机器学习应用。我们会先介绍相关背景知识,接着解释核心概念,分析它们之间的关系,阐述核心算法原理和操作步骤,结合数学模型举例说明,通过项目实战展示代码实现与解读,探讨实际应用场景,推荐相关工具和资源,最后展望未来发展趋势与挑战。希望通过这篇文章,能让大家
- 通信感知如何优化AI算力网络的移动性管理?
AI算力网络与通信
人工智能网络phpai
通信感知如何优化AI算力网络的移动性管理?关键词:通信感知、AI算力网络、移动性管理、优化策略、技术融合摘要:本文围绕通信感知如何优化AI算力网络的移动性管理展开探讨。首先介绍了通信感知、AI算力网络和移动性管理的基本概念,接着深入分析了它们之间的关系以及通信感知在优化移动性管理中的作用原理。通过数学模型和具体代码案例,详细阐述了相关算法和实现步骤。同时,结合实际应用场景,探讨了这种优化方式的实际
- 解析AI算力网络与通信领域强化学习的算法
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构人工智能网络算法ai
解析AI算力网络与通信领域强化学习的算法:从"快递员找路"到"智能网络大脑"关键词:AI算力网络、通信领域、强化学习、马尔可夫决策、资源调度摘要:本文将用"快递物流系统"的类比,带您理解AI算力网络与通信领域如何通过强化学习实现智能决策。我们会从核心概念讲起,逐步拆解强化学习在网络资源调度中的算法原理,结合Python代码实战,最后探索其在5G/6G、边缘计算等场景的应用。即使您没学过复杂数学,也
- 分布式AI算力网络:架构设计与实现原理
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构分布式人工智能网络ai
分布式AI算力网络:架构设计与实现原理关键词:分布式AI算力网络、架构设计、实现原理、AI计算、网络协同摘要:本文深入探讨了分布式AI算力网络的架构设计与实现原理。首先介绍了其背景知识,接着以通俗易懂的方式解释了核心概念及它们之间的关系,阐述了核心算法原理与操作步骤,包含数学模型和公式,通过项目实战展示代码实现,分析了实际应用场景,推荐了相关工具和资源,探讨了未来发展趋势与挑战。旨在帮助读者全面理
- Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)
闲人编程
图像处理图像处理python计算机视觉FFTDCT傅里叶离散余弦变换
目录Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)一、引言1.1图像处理简介1.2快速傅里叶变换与离散余弦变换简介1.3本文目标与结构二、理论背景与数学原理2.1快速傅里叶变换(FFT)介绍2.2离散余弦变换(DCT)介绍2.3两者的应用领域与区别三、算法实现3.1快速傅里叶变换(FFT)实现3.1.1使用Python实现FFT3.1.2图像的频域处理3.2离散余弦变换
- 各种极难数学概念的介绍
程序鸠
#天才少年学习合集数学
(图片摘自B站视频【毕导】这个视频里说的都是真的,但你却永远无法证明)1.李代数(LieAlgebras)定义与运算规则:李代数是一类非结合代数,其元素间的运算满足交替性(即[x,x]=0对所有元素x成立)和雅可比恒等式(即[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0)。这里的运算[⋅,⋅]称为李括号,它度量了元素间的“非交换性”。与李群的关系:李代数与李群紧密相关,李群是具有光
- 3秒搞定DeepSeek数学公式转Word!学生党救星(附代码实测)
Uyker
python编辑器
适用场景:论文交稿deadline/报告美化/作业急救工具白嫖指南:免费+免安装方案优先一、终极方案:Mathpix截图转公式(强推!)效果:复杂矩阵→完美还原步骤:复制DeepSeek输出的LaTeX代码(例)\vec{F}=q(\vec{E}+\vec{v}\times\vec{B})打开Mathpix官网→按Ctrl+Alt+M截取公式右键粘贴到Word→自动变身标准公式!✅优势:识别准确率
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 代数几何:自然曲线的数学研究
AI天才研究院
ChatGPT计算AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
代数几何:自然曲线的数学研究关键词:代数几何、自然曲线、数学研究、算法、应用摘要:本文深入探讨了代数几何在自然曲线研究中的应用,从基础概念到复杂算法,再到实际项目实战,全面揭示了代数几何在数学研究中的核心地位和深远影响。本文旨在为读者提供一份系统、完整、易于理解的技术指南,帮助深入理解自然曲线的数学本质及其在计算机科学中的广泛应用。目录大纲设计思路为了设计出《代数几何:自然曲线的数学研究》这本书的
- 数学:线性相关和线性无关的关系
千码君2016
数学线性代数系数唯一性定义法矩阵秩法行列式法高维空间的基线性方程组
在线性代数中,线性无关是描述向量组性质的重要概念,它反映了向量组中向量之间是否存在“冗余”或“依赖”关系。以下从定义、判断方法、几何意义及应用等方面详细说明:一、线性无关的定义才成立,则称该向量组线性无关。反之,若存在不全为0的系数使等式成立,则称向量组线性相关。二、核心理解:线性无关的本质三、线性无关的判断方法1.定义法(直接验证)2.矩阵秩法
- 4、理解线性代数的核心概念与应用
rice5
线性代数第五版深度解析线性代数向量空间子空间
理解线性代数的核心概念与应用1引言线性代数是现代数学的重要分支之一,广泛应用于科学、工程、计算机科学等领域。理解线性代数的基本概念和原理不仅有助于学术研究,还能够提升解决实际问题的能力。本文将深入探讨线性代数中的核心概念,帮助读者建立坚实的理论基础,并掌握实际应用技巧。2向量空间向量空间是线性代数的基础概念之一。一个向量空间(V)是指一个集合,其元素称为向量,并且这些向量之间可以进行加法运算和标量
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST