【Kafka】结合JAVA实战与代码剖析(四)

文章目录

  • 一、目标
  • 二、依赖
  • 三、消费者
    • 3.1 初始化Consumer
    • 3.2 订阅主题(也订阅多个,可正则)
    • 3.3 轮询
    • 3.4 完整Demo
    • 3.5 提交偏移量 offset
      • 3.5.1 自动提交 offset
      • 3.5.2 手动提交 offset (三选一)
      • 3.5.3 手动提交 offset (同步异步一起上)
      • 3.5.4 提交特定偏移量 offset
  • 四、生产者 Producer
    • 4.1 简单默认发送
    • 4.2 指定分区 Partition 发送
    • 4.3 指定 key 发送
    • 4.4 同时指定 Partition 与 Key
  • 五、 生产者发送代码剖析
    • 5.1 初始化 KafkaProducer
    • 5.2 send 消息格式
    • 5.3 send方法剖析
  • 六、生产者Producer返回值处理
    • 6.1 发送并获取返回结果
    • 6.2 发送并获取返回结果(异步)
  • == 番外篇 ==

一、目标

  1. 生产者指定Partition发送

二、依赖


        
            org.apache.kafka
            kafka_2.12
            2.3.1
        
        
            org.apache.kafka
            kafka-clients
            2.3.1
        
    

三、消费者

3.1 初始化Consumer

  • org.apache.kafka.clients.consumer.KafkaConsumer
public class KafkaConsumer implements Consumer {
	public KafkaConsumer(Properties properties) {
	        this(properties, null);
	    }
}
  • 初始化Demo
    public static KafkaConsumer getInstance(){
        Properties props = new Properties();
        props.put("bootstrap.servers","localhost:9092,localhost:9093,localhost:9094");
        props.put("group.id","group01");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer");
        KafkaConsumer consumer = new KafkaConsumer(props);
        return consumer;
    }

3.2 订阅主题(也订阅多个,可正则)

consumer.subscribe(Collections.singletonList("topic01");

正则:
consumer.subscribe("test.*");

3.3 轮询

消息轮询是消费者API的核心,通过一个简单的轮询像服务器请求数据。一旦Consumer订阅了Topic,轮询就会处理所有的细节,包括Group协调、分区再均衡 Partition Rebalance、发送心跳 heartbeat 和获取数据,开发者只需要一组简单的 API 来处理从Partition 返回的数据。

没数据的话最多等待100ms,然后不断轮询。

 try{
            while(true){
                // 间隔100毫秒拉取一次。
                ConsumerRecords records = consumer.poll(Duration.ofMillis(100));
                for(ConsumerRecord record :records){
                    System.out.println(record);
                    System.out.println("msgContent :" + new String(record.value()));
                }
            }
        } finally {
            consumer.close();
        }

3.4 完整Demo

package indi.sword.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

/**
 * @author jeb_lin
 * 3:57 PM 2020/7/31
 */
public class MQConsumer {
    private static final String TOPIC = "testCluster2";

    /**
     * 设置基本信息,获取消费者
     */
    public static KafkaConsumer getInstance(){
        Properties props = new Properties();
        props.put("bootstrap.servers","localhost:9092,localhost:9093,localhost:9094");
        props.put("group.id","group01");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer");
        KafkaConsumer consumer = new KafkaConsumer(props);
        return consumer;
    }

   @Test
    public void testConsume(){
        KafkaConsumer consumer = MQConsumer.getInstance();
        // 订阅指定的主题 Topic
        consumer.subscribe(Collections.singletonList(TOPIC));
        try{
            while(true){
                // 间隔100毫秒拉取一次。
                ConsumerRecords records = consumer.poll(Duration.ofMillis(10));
                for(ConsumerRecord record :records){
                    System.out.println(record);
                    System.out.println("msgContent :" + new String(record.value()));
                }
            }
        } finally {
            consumer.close();
        }
    }
}

  • 输出:
ConsumerRecord(topic = testCluster2, partition = 1, leaderEpoch = 9, offset = 42, CreateTime = 1596187207508, serialized key size = 1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = [B@3e2e18f2, value = [B@470f1802)
msgContent :msg-9

可以看到消费者拉取的是哪个Partition 与内容。

3.5 提交偏移量 offset

  • 看demo的,入门的小伙伴可以直接跳到下面=== 生产者篇章 ===

3.5.1 自动提交 offset

  • 看=== 消费者配置 === 8. auto.commit.interval.ms

假如提交间隔是5s,那么轮询拉回来的消息处理也就是for的时候,会去检查是否5s了,5s的话,那么会将上次poll时候的最大 offset提交上去,也就是for 到的offset,比如总共拉回来了10个消息,目前for处理了5个了,现在已经5秒了,那么提交offset就是5.

3.5.2 手动提交 offset (三选一)

  • 三选一
    a. 手动同步提交
    b. 手动异步提交
    c. 手动异步+回调处理
	/**
     * 测试提交三种 Offset 提交方式
     */
    @Test
    public void testCommitOffset() {
        KafkaConsumer consumer = MQConsumer.getInstance();
        // 订阅指定的主题 Topic
        consumer.subscribe(Collections.singletonList(TOPIC));
        try {
            while (true) {
                // 间隔100毫秒拉取一次。
                ConsumerRecords records = consumer.poll(Duration.ofMillis(10));
                for (ConsumerRecord record : records) {
                    System.out.println(record);
                    System.out.println("msgContent :" + new String(record.value()));

                    try {
                        consumer.commitSync();   // 手动同步提交,3选1
                        consumer.commitAsync();  // 手动异步提交
                        // 手动异步+回调处理
                        consumer.commitAsync(new OffsetCommitCallback() {
                            @Override
                            public void onComplete(Map offsets, Exception e) {
                                if (e != null) {
                                    System.out.println("commit failed for offsets -> {} " + offsets + ",e -> {} " + e);
                                }
                            }
                        });
                    } catch (CommitFailedException e) {
                        System.out.println("commit failed" + e);
                    }
                }
            }
        } finally {
            consumer.close();
        }
    }

3.5.3 手动提交 offset (同步异步一起上)

  • 同步异步一起上
    没抛异常的时候,异步提交,抛异常后捕获,同步提交
	/**
     * 同步异步一起上
     */
    @Test
    public void testCommitOffsetBoth() {
        KafkaConsumer consumer = MQConsumer.getInstance();
        // 订阅指定的主题 Topic
        consumer.subscribe(Collections.singletonList(TOPIC));
        try {
            while (true) {
                // 间隔100毫秒拉取一次。
                ConsumerRecords records = consumer.poll(Duration.ofMillis(10));
                for (ConsumerRecord record : records) {
                    System.out.println(record);
                    System.out.println("msgContent :" + new String(record.value()));
                    try {
                        consumer.commitAsync();  // 手动异步提交
                    } catch (CommitFailedException e) {
                        System.out.println("commit failed" + e);
                    } finally {
                        consumer.commitSync();
                    }
                }
            }
        } finally {
            consumer.close();
        }
    }

3.5.4 提交特定偏移量 offset

  • org.apache.kafka.common.TopicPartition
public final class TopicPartition {
    private int hash = 0;
    private final int partition;
    private final String topic;
}
  • OffsetAndMetadata
public class OffsetAndMetadata implements Product, Serializable {
    private final long offset;
    private final String metadata;
    private long timestamp;

提交特定的 offset

	/**
     * 提交特定的 offset
     */
    @Test
    public void testCommitSpecificOffset() {
        KafkaConsumer consumer = MQConsumer.getInstance();
        // 订阅指定的主题 Topic
        consumer.subscribe(Collections.singletonList(TOPIC));
        Map currentOffsets = new HashMap<>();
        int count = 0;
        try {
            while (true) {
                // 间隔100毫秒拉取一次。
                ConsumerRecords records = consumer.poll(Duration.ofMillis(10));
                for(ConsumerRecord record:records){
                    System.out.println(record);
                    System.out.println("msgContent :" + new String(record.value()));
                    currentOffsets.put(new TopicPartition(record.topic(),record.partition()),
                            new OffsetAndMetadata(record.offset() + 1,"no metadata"));
                    if(count % 8 == 0){
                        consumer.commitAsync(currentOffsets,null);
                    }
                    count++;
                }
            }
        } finally {
            consumer.close();
        }
    }

四、生产者 Producer

package indi.sword.kafka;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.utils.Utils;
import org.junit.Test;

import java.util.Properties;

/**
 * @author jeb_lin
 * 3:50 PM 2020/7/31
 */
public class MQProducer {
    private static final String TOPIC = "testCluster2";
    private static KafkaProducer kafkaProducer = null;

    /**
     * 获取生产者 Producer
     */
    public static KafkaProducer getInstance() {
        if (kafkaProducer == null) {
            kafkaProducer = new KafkaProducer(getDefaultProductProperties());
            System.out.println("kafka message producer start .....");
        }
        return kafkaProducer;
    }

    /**
     * 获取默认的生产者 Producer 的配置
     */
    private static Properties getDefaultProductProperties() {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092,localhost:9093,localhost:9094");
        props.put("key.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
        return props;
    }
}

4.1 简单默认发送

/**
     * 简单发送,指定 Topic 与 发送内容 value
     * @throws Exception
     */
    @Test
    public void testSendSimple() throws Exception {
        KafkaProducer producer = MQProducer.getInstance();

        for (int i = 0; i < 10; i++) {
            String msg = "msg-" + i;
            System.out.println("send msg : " + msg);
            producer.send(new ProducerRecord(TOPIC, msg.getBytes()));
            Thread.sleep(1000);
        }
    }
  • 生产者输出:
kafka message producer start .....
send msg : msg-0
...
send msg : msg-9
  • 消费者输出:
ConsumerRecord(topic = testCluster2, partition = 1, leaderEpoch = 15, offset = 104, CreateTime = 1596260977187, serialized key size = -1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = [B@6a01e23)
msgContent :msg-0
......
ConsumerRecord(topic = testCluster2, partition = 2, leaderEpoch = 19, offset = 67, CreateTime = 1596260986210, serialized key size = -1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = [B@23986957)
msgContent :msg-9

4.2 指定分区 Partition 发送

/**
     * 指定分区 Partition 发送
     * @throws Exception
     */
    @Test
    public void testSendSpecificPartition() throws Exception {
        KafkaProducer producer = MQProducer.getInstance();

        for (int i = 0; i < 10; i++) {
            String msg = "msg-" + i;
            System.out.println("send msg : " + msg);
            producer.send(new ProducerRecord(TOPIC, 1, null, msg.getBytes()));
            Thread.sleep(1000);
        }
    }
  • 消费者输出
ConsumerRecord(topic = testCluster2, partition = 1, leaderEpoch = 15, offset = 107, CreateTime = 1596261140966, serialized key size = -1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = [B@2a32de6c)
msgContent :msg-0
...
ConsumerRecord(topic = testCluster2, partition = 1, leaderEpoch = 15, offset = 116, CreateTime = 1596261150001, serialized key size = -1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = [B@2fd6b6c7)
msgContent :msg-9
  • 结论:可以看出消息都发送到了 Partition1 这个分区了。

4.3 指定 key 发送

  • key的hash规则是这个:Utils.toPositive(Utils.murmur2(“1”.getBytes())) % 4 = 3
/**
     * 指定 Key 发送
     * @throws Exception
     */
    @Test
    public void testSendSpecificKey() throws Exception {
        KafkaProducer producer = MQProducer.getInstance();
        // 根据key去进行算法路由,这是底层的算法公式
        System.out.println(Utils.toPositive(Utils.murmur2("1".getBytes())) % 4);

        for (int i = 0; i < 10; i++) {
            String msg = "msg-" + i;
            System.out.println("send msg : " + msg);
            producer.send(new ProducerRecord(TOPIC, null, "1".getBytes(), msg.getBytes()));
            Thread.sleep(1000);
        }
    }
  • 生产者输出:
kafka message producer start .....
specificKey :3
send msg : msg-0
send msg : msg-1
。。。
send msg : msg-9
  • 消费者输出:
ConsumerRecord(topic = testCluster2, partition = 3, leaderEpoch = 16, offset = 135, CreateTime = 1596261903368, serialized key size = 1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = [B@358ee631, value = [B@ec756bd)
msgContent :msg-0
...
ConsumerRecord(topic = testCluster2, partition = 3, leaderEpoch = 16, offset = 144, CreateTime = 1596261912403, serialized key size = 1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = [B@30b7c004, value = [B@79efed2d)
msgContent :msg-9

4.4 同时指定 Partition 与 Key

  • key的hash规则是这个:Utils.toPositive(Utils.murmur2(“1”.getBytes())) % 4 = 3
/**
     * 同时指定 Partition 与 Key ,最终只有 Partition 参数生效
     * @throws Exception
     */
    @Test
    public void testSendSpecificPartitionAndKey() throws Exception {
        KafkaProducer producer = MQProducer.getInstance();
        System.out.println("specificKey :" + Utils.toPositive(Utils.murmur2("1".getBytes())) % 4);

        for (int i = 0; i < 10; i++) {
            String msg = "msg-" + i;
            System.out.println("send msg : " + msg);
            producer.send(new ProducerRecord(TOPIC, 1, "1".getBytes(), msg.getBytes()));
            Thread.sleep(1000);
        }
    }
  • 消费者输出:
ConsumerRecord(topic = testCluster2, partition = 1, leaderEpoch = 15, offset = 117, CreateTime = 1596262013527, serialized key size = 1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = [B@2928854b, value = [B@27ae2fd0)
msgContent :msg-0
...
ConsumerRecord(topic = testCluster2, partition = 1, leaderEpoch = 15, offset = 126, CreateTime = 1596262022569, serialized key size = 1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = [B@309e345f, value = [B@56a6d5a6)
msgContent :msg-9
  • 结论:指定的partition生效。

五、 生产者发送代码剖析

  • 入门者可以直接跳过,直接看 === 生产者的返回值处理 ===

接口: org.apache.kafka.clients.producer.Producer
具体实现:org.apache.kafka.clients.producer.KafkaProducer

5.1 初始化 KafkaProducer

  • org.apache.kafka.clients.producer.KafkaProducer
public class KafkaProducer implements Producer {
		public KafkaProducer(Properties properties) {
        this(new ProducerConfig(properties), null, null);
    }
}
  • 初始化Demo
private static KafkaProducer kafkaProducer = null;

public static synchronized Producer getProducer() {
  if (kafkaProducer == null) {
    kafkaProducer = new KafkaProducer<>(getDefaultProductProperties());
    LOG.info("kafka message producer start .....");
  }
  return kafkaProducer;
}

/**
 * 获取默认的生产者的配置
 */
private static Properties getDefaultProductProperties() {
  Properties props = new Properties();
  props.put("bootstrap.servers", "host01:port,host02:port,host03:port");
  props.put("key.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
  props.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
  return props;
}
  1. bootstrap.servers: 指定 broker 的地址清单,地址格式为 host:port 。尽量不少于1个
  2. key.serializer :broker 希望收到的消息都是字节数组。Kafka客户端默认提供了,ByteArraySerializer、StringSerializer和 IntegerSerializer
  3. value.serializer : 同上

5.2 send 消息格式

public class KafkaProducer implements Producer { 
@Override
    public Future send(ProducerRecord record) {
        return send(record, null);
    }
}
  • 入参: org.apache.kafka.clients.producer.ProducerRecord
public final class ProducerRecord {
    private final String topic;
    private final Integer partition;
    private final K key;
    private final V value;
}

发送到哪个 partition 由下面规则决定:
1. 只指定了 partition 。
2. 只指定了 key ,那么将会 hash 的方式发送到指定 partition 。
3. 通知指定 partition 和 key,那么key不起作用,只看partition 。
4. 如果没有指定  partition 和 key ,那么随机发 。

返回值: RecordMetadata:

返回值: org.apache.kafka.clients.producer.RecordMetadata
public final class RecordMetadata {
    private final long offset;
    private final TopicPartition topicPartition;
    ...
}

5.3 send方法剖析

  • 进入 org.apache.kafka.clients.producer.KafkaProducer#send(org.apache.kafka.clients.producer.ProducerRecord)
    public Future send(ProducerRecord record) {
        return this.send(record, (Callback)null);
    }
  • 进入org.apache.kafka.clients.producer.KafkaProducer#send(org.apache.kafka.clients.producer.ProducerRecord, org.apache.kafka.clients.producer.Callback)
public Future send(ProducerRecord record, Callback callback) {
        ProducerRecord interceptedRecord = this.interceptors.onSend(record);
        return this.doSend(interceptedRecord, callback);
    }
  • 进入 org.apache.kafka.clients.producer.KafkaProducer#doSend 重点看下面的 partition方法
private Future doSend(ProducerRecord record, Callback callback) {
       ...
            int partition = this.partition(record, serializedKey, serializedValue, cluster);
            tp = new TopicPartition(record.topic(), partition);
	...
  • org.apache.kafka.clients.producer.KafkaProducer#partition 具体路由方法
    private int partition(ProducerRecord record, byte[] serializedKey, byte[] serializedValue, Cluster cluster) {
        Integer partition = record.partition();
        return partition != null ? partition : this.partitioner.partition(record.topic(), record.key(), serializedKey, record.value(), serializedValue, cluster);
    }

可以看到,先判断是否有指定 Partition,如果没有,再进入下一步 partition 方法

  • org.apache.kafka.clients.producer.internals.DefaultPartitioner#partition
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        List partitions = cluster.partitionsForTopic(topic);
        int numPartitions = partitions.size();
        if (keyBytes == null) {
            int nextValue = this.nextValue(topic);
            List availablePartitions = cluster.availablePartitionsForTopic(topic);
            if (availablePartitions.size() > 0) {
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                return ((PartitionInfo)availablePartitions.get(part)).partition();
            } else {
                return Utils.toPositive(nextValue) % numPartitions;
            }
        } else {
            return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
        }
    }
  1. 首先,如果有指定key,那么直接按照hash算法算出分区,Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
  2. 其次,如果没有指定key,那么先取一个nextValue,然后再根据hash算法算出一个分区,这个地方,看了nextValue方法,就能明白是随机的了。
  • org.apache.kafka.clients.producer.internals.DefaultPartitioner#nextValue
private int nextValue(String topic) {
        AtomicInteger counter = (AtomicInteger)this.topicCounterMap.get(topic);
        if (null == counter) {
            counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
            AtomicInteger currentCounter = (AtomicInteger)this.topicCounterMap.putIfAbsent(topic, counter);
            if (currentCounter != null) {
                counter = currentCounter;
            }
        }

        return counter.getAndIncrement();
    }

由 ThreadLocalRandom.current().nextInt()) 可以瞧见是采用随机的算法。

六、生产者Producer返回值处理

  • send消息发送3种方式:
1. 发送并忘记(fire-and-forget) :发完就不管了 。
   producer.send(record);
2. 同步发送 :调用 send() 发送消息,返回一个 Future 对象,调用 get() 进行等待获取发送结果。
   producer.send(record).get()
3. 异步发送 :调用 send() ,并指定一个回调函数 org.apache.kafka.clients.producer.Callback ,服务器在返回响应时会调用该函数。
    producer.send(record,new DemoProducerCallBack())
 producer 可以使用多线程来发送消息,可以在生产者数量不变的情况下增加线程数量,如果还不够,可以增加生产者数量。
  • 上面几种列举的几个Demo都是 【发送并忘记(fire-and-forget) :发完就不管了 。】

  • 返回值: RecordMetadata:

public final class RecordMetadata {
    public static final int UNKNOWN_PARTITION = -1;
    private final long offset; // 分区的位置偏移量
    private final long timestamp; // 时间戳
    private final int serializedKeySize;  
    private final int serializedValueSize;
    private final TopicPartition topicPartition; //分区
    private volatile Long checksum; // 签名,用于验证的

6.1 发送并获取返回结果

  • 同步发送 :调用 send() 发送消息,返回一个 Future 对象,调用 get() 进行等待获取发送结果。
   @Test
    public void testSendAndGet() throws Exception {
        KafkaProducer producer = MQProducer.getInstance();
        for (int i = 0; i < 10; i++) {
            String msg = "msg-" + i;
            System.out.println("send msg : " + msg);
            RecordMetadata recordMetadata = (RecordMetadata) producer.send(new ProducerRecord(TOPIC, msg.getBytes())).get();
            System.out.println("partition : " + recordMetadata.partition() + " ,offset :" + recordMetadata.offset() + " ,serializedKeySize: " +
                    recordMetadata.serializedKeySize() + " ,serializedValueSize: " + recordMetadata.serializedValueSize() + " ,timestamp: " + recordMetadata.timestamp() + " ,checksum: " + recordMetadata.checksum());
            Thread.sleep(1000);
        }
    }
  • 生产者输出:
kafka message producer start .....
send msg : msg-0
partition : 1 ,offset :205 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596281246172 ,checksum: 3225500964
...
send msg : msg-9
partition : 2 ,offset :80 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596281255240 ,checksum: 4027041389

6.2 发送并获取返回结果(异步)

  • org.apache.kafka.clients.producer.KafkaProducer#send(org.apache.kafka.clients.producer.ProducerRecord, org.apache.kafka.clients.producer.Callback) 方法
@Test
    public void testSendAndAsyncGet() throws Exception {
        KafkaProducer producer = MQProducer.getInstance();
        List> futureList = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            String msg = "msg-" + i;
            System.out.println("send msg : " + msg);
            Future future = producer.send(new ProducerRecord(TOPIC, msg.getBytes()), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException interruptedException) {
                        interruptedException.printStackTrace();
                    }
                    System.out.println("partition : " + recordMetadata.partition() + " ,offset :" + recordMetadata.offset() + " ,serializedKeySize: " +
                            recordMetadata.serializedKeySize() + " ,serializedValueSize: " + recordMetadata.serializedValueSize() + " ,timestamp: " + recordMetadata.timestamp() + " ,checksum: " + recordMetadata.checksum());
                }
            });
            futureList.add(future);
            System.out.println("send Msg finish ");
        }
        for (Future future : futureList) {
            future.get();
        }
    }
  • 生产者输出
kafka message producer start .....
send msg : msg-0
send Msg finish 
send msg : msg-1
send Msg finish 
send msg : msg-2
send Msg finish 
send msg : msg-3
send Msg finish 
send msg : msg-4
send Msg finish 
send msg : msg-5
send Msg finish 
send msg : msg-6
send Msg finish 
send msg : msg-7
send Msg finish 
send msg : msg-8
send Msg finish 
send msg : msg-9
send Msg finish 
partition : 2 ,offset :93 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329819 ,checksum: 2836644770
partition : 2 ,offset :94 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329820 ,checksum: 1853033912
partition : 2 ,offset :95 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329820 ,checksum: 1853033912
partition : 0 ,offset :89 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329820 ,checksum: 1853033912
partition : 0 ,offset :90 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329820 ,checksum: 1853033912
partition : 1 ,offset :219 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329813 ,checksum: 574499175
partition : 1 ,offset :220 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329820 ,checksum: 1853033912
partition : 1 ,offset :221 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329820 ,checksum: 1853033912
partition : 3 ,offset :173 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329820 ,checksum: 1853033912
partition : 3 ,offset :174 ,serializedKeySize: -1 ,serializedValueSize: 5 ,timestamp: 1596282329820 ,checksum: 1853033912
  • 结论:可以看到的是,消息是在发送完毕之后,才处理消息结果的。

== 番外篇 ==

上一章节:【Kafka】消费者组 Consumer Group(三)

你可能感兴趣的:(Kafka,kafka)