对数据库索引的理解

索引目的:加速查询数据的速度

索引越多越好?:不是,建立一个索引就会将该字段与索引建立一个独立的树形结构数据,占据空间。索引会加大非查询时的时间,以及增加数据库存储压力。

索引类型:聚集索引(主键)、非聚集索引、复合索引

聚集索引

想要理解索引原理必须清楚一种数据结构「平衡树」(非二叉),也就是b tree或者 b+ tree,重要的事情说三遍:“平衡树,平衡树,平衡树”。当然, 有的数据库也使用哈希桶作用索引的数据结构 , 然而, 主流的RDBMS都是把平衡树当做数据表默认的索引数据结构的。

我们平时建表的时候都会为表加上主键, 在某些关系数据库中, 如果建表时不指定主键,数据库会拒绝建表的语句执行。 事实上, 一个加了主键的表,并不能被称之为「表」。一个没加主键的表,它的数据无序的放置在磁盘存储器上,一行一行的排列的很整齐, 跟我认知中的「表」很接近。如果给表上了主键,那么表在磁盘上的存储结构就由整齐排列的结构转变成了树状结构,也就是上面说的「平衡树」结构,换句话说,就是整个表就变成了一个索引。没错, 再说一遍, 整个表变成了一个索引,也就是所谓的「聚集索引」。 这就是为什么一个表只能有一个主键, 一个表只能有一个「聚集索引」,因为主键的作用就是把「表」的数据格式转换成「索引(平衡树)」的格式放置。

上图就是带有主键的表(聚集索引)的结构图。图画的不是很好, 将就着看。其中树的所有结点(底部除外)的数据都是由主键字段中的数据构成,也就是通常我们指定主键的id字段。最下面部分是真正表中的数据。 假如我们执行一个SQL语句:

select * from table where id = 1256;

首先根据索引定位到1256这个值所在的叶结点,然后再通过叶结点取到id等于1256的数据行。 这里不讲解平衡树的运行细节, 但是从上图能看出,树一共有三层, 从根节点至叶节点只需要经过三次查找就能得到结果。如下图

 

假如一张表有一亿条数据 ,需要查找其中某一条数据,按照常规逻辑, 一条一条的去匹配的话, 最坏的情况下需要匹配一亿次才能得到结果,用大O标记法就是O(n)最坏时间复杂度,这是无法接受的,而且这一亿条数据显然不能一次性读入内存供程序使用, 因此, 这一亿次匹配在不经缓存优化的情况下就是一亿次IO开销,以现在磁盘的IO能力和CPU的运算能力, 有可能需要几个月才能得出结果 。如果把这张表转换成平衡树结构(一棵非常茂盛和节点非常多的树),假设这棵树有10层,那么只需要10次IO开销就能查找到所需要的数据, 速度以指数级别提升,用大O标记法就是O(log n),n是记录总树,底数是树的分叉数,结果就是树的层次数。换言之,查找次数是以树的分叉数为底,记录总数的对数,用公式来表示就是

用程序来表示就是Math.Log(100000000,10),100000000是记录数,10是树的分叉数(真实环境下分叉数远不止10), 结果就是查找次数,这里的结果从亿降到了个位数。因此,利用索引会使数据库查询有惊人的性能提升。

然而, 事物都是有两面的, 索引能让数据库查询数据的速度上升, 而使写入数据的速度下降,原因很简单的, 因为平衡树这个结构必须一直维持在一个正确的状态, 增删改数据都会改变平衡树各节点中的索引数据内容,破坏树结构, 因此,在每次数据改变时, DBMS必须去重新梳理树(索引)的结构以确保它的正确,这会带来不小的性能开销,也就是为什么索引会给查询以外的操作带来副作用的原因。

 

非聚集索引(常规索引)

讲完聚集索引 , 接下来聊一下非聚集索引, 也就是我们平时经常提起和使用的常规索引。

非聚集索引和聚集索引一样, 同样是采用平衡树作为索引的数据结构。索引树结构中各节点的值来自于表中的索引字段, 假如给user表的name字段加上索引 , 那么索引就是由name字段中的值构成,在数据改变时, DBMS需要一直维护索引结构的正确性。如果给表中多个字段加上索引 , 那么就会出现多个独立的索引结构,每个索引(非聚集索引)互相之间不存在关联。 如下图

每次给字段建一个新索引, 字段中的数据就会被复制一份出来, 用于生成索引。 因此, 给表添加索引,会增加表的体积, 占用磁盘存储空间。

非聚集索引和聚集索引的区别在于, 通过聚集索引可以查到需要查找的数据, 而通过非聚集索引可以查到记录对应的主键值 , 再使用主键的值通过聚集索引查找到需要的数据,如下图

不管以任何方式查询表, 最终都会利用主键通过聚集索引来定位到数据, 聚集索引(主键)是通往真实数据所在的唯一路径

 

复合索引

然而, 有一种例外可以不使用聚集索引就能查询出所需要的数据, 这种非主流的方法 称之为「覆盖索引」查询, 也就是平时所说的复合索引或者多字段索引查询。 文章上面的内容已经指出, 当为字段建立索引以后, 字段中的内容会被同步到索引之中, 如果为一个索引指定两个字段, 那么这个两个字段的内容都会被同步至索引之中

简单来讲,如果只需要查找两个字段,那么就可以建立这两个字段的复合索引,不需要聚集索引的方式查找就可以定位到数据。

先看下面这个SQL语句

//建立索引

create index index_birthday on user_info(birthday);

//查询生日在1991年11月1日出生用户的用户名

select user_name from user_info where birthday = '1991-11-1'

这句SQL语句的执行过程如下

首先,通过非聚集索引index_birthday查找birthday等于1991-11-1的所有记录的主键ID值

然后,通过得到的主键ID值执行聚集索引查找,找到主键ID值对就的真实数据(数据行)存储的位置

最后, 从得到的真实数据中取得user_name字段的值返回, 也就是取得最终的结果

我们把birthday字段上的索引改成双字段的覆盖索引

create index index_birthday_and_user_name on user_info(birthday, user_name);

这句SQL语句的执行过程就会变为

通过非聚集索引index_birthday_and_user_name查找birthday等于1991-11-1的叶节点的内容,然而, 叶节点中除了有user_name表主键ID的值以外, user_name字段的值也在里面, 因此不需要通过主键ID值的查找数据行的真实所在, 直接取得叶节点中user_name的值返回即可。 通过这种覆盖索引直接查找的方式, 可以省略不使用覆盖索引查找的后面两个步骤, 大大的提高了查询性能,如下图

数据库索引的大致工作原理就是像文中所述, 然而细节方面可能会略有偏差,这但并不会对概念阐述的结果产生影响 。

 

通过实例理解单列索引、多列索引以及复合索引的最左前缀原则

      实例:现在我们想查出满足以下条件的用户id:
      mysql>SELECT `uid` FROM people WHERE lname`='Liu'  AND `fname`='Zhiqun' AND `age`=26 ; 因为我们不想扫描整表,故考虑用索引。

       1、单列索引:
       ALTER TABLE people ADD INDEX lname (lname);
     将lname列建索引,这样就把范围限制在lname='Liu'的结果集1上,之后扫描结果集1,产生满足fname='Zhiqun'的结果集2,再扫描结果集2,找到 age=26的结果集3,即最终结果。

      由于建立了lname列的索引,与执行表的完全扫描相比,效率提高了很多,但我们要求扫描的记录数量仍旧远远超过了实际所需 要的。虽然我们可以删除lname列上的索引,再创建fname或者age 列的索引,但是,不论在哪个列上创建索引搜索效率仍旧相似。

     2、多列索引:
     ALTER TABLE people ADD INDEX lname_fname_age (lame,fname,age);

     为了提高搜索效率,我们需要考虑运用多列索引,由于索引文件以B-Tree格式保存,所以我们不用扫描任何记录,即可得到最终结果。

     注:在mysql中执行查询时,只能使用一个索引,如果我们在lname,fname,age上分别建索引,执行查询时,只能使用一个索引,mysql会选择一个最严格(获得结果集记录数最少)的索引。

     3.最左前缀:顾名思义,就是最左优先,上例中我们创建了lname_fname_age多列索引,相当于创建了(lname)单列索引,(lname,fname)组合索引以及(lname,fname,age)组合索引。

     注:在创建复合索引时,要根据业务需求,where子句中使用最频繁的一列放在最左边。

 

复合索引的建立以及最左前缀原则

      索引字符串值的前缀(prefixe)。如果你需要索引一个字符串数据列,那么最好在任何适当的情况下都应该指定前缀长度。
例如,如果有CHAR(200)数据列,如果前面10个或20个字符都不同,就不要索引整个数据列。索引前面10个或20个字符会节省大量的空间。你可以索引CHAR、VARCHAR、BINARY、VARBINARY、BLOB和TEXT数据列的前缀。
        假设你在表的state、city和zip数据列上建立了复合索引。索引中的数据行按照state/city/zip次序排列,因此它们也会自动地按照state/city和state次序排列。这意味着,即使你在查询中只指定了state值,或者指定state和city值,MySQL也可以使用这个索引。因此,这个索引可以被用于搜索如下所示的数据列组合:
       state, city, zip
       state, city
       state
       mysql不能利用这个索引来搜索没有包含在最左前缀的内容。例如,如果你按照city或zip来搜索,就不会使用到这个索引。如果你搜索给定的state和具体的ZIP代码(索引的1和3列),该索引也是不能用于这种组合值的,尽管MySQL可以利用索引来查找匹配的state从而缩小搜索的范围。
        如果你考虑给已经索引过的表添加索引,那么就要考虑你将增加的索引是否是已有的多列索引的最左前缀。如果是这样的,不用增加索引,因为已经有了(例如,如果你在state、city和zip上建立了索引,那么没有必要再增加state的索引)。

 

覆盖索引(非聚集索引的场景)

什么是回表?:先通过非聚集索引(辅助索引:存储索引和主键值)找到主键,再通过主键索引查询具体的数据。

什么是覆盖索引?:即通过非聚集索引查到的字段:索引即主键,即为要查找的全部数据,就不必再回表查询。

所以尽量避免使用select *等操作。

在辅助索引里面,不管是单列索引还是联合索引,如果 select 的数据列只用从索引 中就能够取得,不必从数据区中读取,这时候使用的索引就叫做覆盖索引,这样就避免 了回表。

 

 

索引条件下推(ICP:Index Condition PushDown)

set optimizer_switch='index_condition_pushdown=on/off'; 默认开启on

索引的比较是在存储引擎进行的,数据记录的比较,是在 Server 层进行的。索引条件下推(Index Condition Pushdown),5.6 以后完善的功能。只适用于二级索引(非主键索引)。ICP 的目标是减少访问表的完整行的读数量从而减少 I/O 操作。

alter table employees add index idx_lastname_firstname(last_name,first_name);

select * from employees where last_name='wang' and first_name LIKE '%zi' ;

如果设置开启ICP,则会先通过索引过滤数据。如果不开启,则不会使用索引过滤,即不会使用存储引擎,在Server端进行。

 

 

 

你可能感兴趣的:(Mysql,索引)