Some training algorithms, such as GradientDescent and Momentum often benefit from maintaining a moving average of variables during optimization. Using the moving averages for evaluations often improve results significantly.
tensorflow
官网上对于这个方法功能的介绍。GradientDescent
和 Momentum
方式的训练 都能够从 ExponentialMovingAverage
方法中获益。
什么是MovingAverage?
假设我们与一串时间序列
MovingAverage
就是:
这时,再看官方文档中的公式:
shadow variables are created with trainable=False
。用其来存放 ema 的值
import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)
with tf.control_dependencies([update]):
#返回一个op,这个op用来更新moving_average,i.e. shadow value
ema_op = ema.apply([w])#这句和下面那句不能调换顺序
# 以 w 当作 key, 获取 shadow value 的值
ema_val = ema.average(w)#参数不能是list,有点蛋疼
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(3):
sess.run(ema_op)
print(sess.run(ema_val))
# 创建一个时间序列 1 2 3 4
#输出:
#1.1 =0.9*1 + 0.1*2
#1.29 =0.9*1.1+0.1*3
#1.561 =0.9*1.29+0.1*4
你可能会奇怪,明明 只执行三次循环, 为什么产生了 4 个数?
这是因为,当程序执行到 ema_op = ema.apply([w])
的时候,如果 w
是 Variable
, 那么将会用 w
的初始值初始化 ema
中关于 w
的 ema_value
,所以 emaVal0=1.0 。如果 w
是 Tensor
的话,将会用 0.0
初始化。
官网中的示例:
# Create variables.
var0 = tf.Variable(...)
var1 = tf.Variable(...)
# ... use the variables to build a training model...
...
# Create an op that applies the optimizer. This is what we usually
# would use as a training op.
opt_op = opt.minimize(my_loss, [var0, var1])
# Create an ExponentialMovingAverage object
ema = tf.train.ExponentialMovingAverage(decay=0.9999)
# Create the shadow variables, and add ops to maintain moving averages
# of var0 and var1.
maintain_averages_op = ema.apply([var0, var1])
# Create an op that will update the moving averages after each training
# step. This is what we will use in place of the usual training op.
with tf.control_dependencies([opt_op]):
training_op = tf.group(maintain_averages_op)
# run这个op获取当前时刻 ema_value
get_var0_average_op = ema.average(var0)
假设我们使用了ExponentialMovingAverage
方法训练了神经网络, 在test
阶段,如何使用 ExponentialMovingAveraged parameters
呢? 官网也给出了答案
方法一:
# Create a Saver that loads variables from their saved shadow values.
shadow_var0_name = ema.average_name(var0)
shadow_var1_name = ema.average_name(var1)
saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1})
saver.restore(...checkpoint filename...)
# var0 and var1 now hold the moving average values
方法二:
#Returns a map of names to Variables to restore.
variables_to_restore = ema.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
...
saver.restore(...checkpoint filename...)
这里要注意的一个问题是,用于保存的saver
可不能这么写,参考 http://blog.csdn.net/u012436149/article/details/56665612
https://www.tensorflow.org/versions/master/api_docs/python/train/moving_averages