tensorflow学习笔记(三十三):ExponentialMovingAverage

ExponentialMovingAverage

Some training algorithms, such as GradientDescent and Momentum often benefit from maintaining a moving average of variables during optimization. Using the moving averages for evaluations often improve results significantly.
tensorflow 官网上对于这个方法功能的介绍。GradientDescentMomentum 方式的训练 都能够从 ExponentialMovingAverage 方法中获益。

什么是MovingAverage?
假设我们与一串时间序列

{a1,a2,a3,...,at1,at,...}
,那么,这串时间序列的 MovingAverage 就是:
mvt=decaymvt1+(1decay)at

这是一个递归表达式。
如何理解这个式子呢?
他就像一个滑动窗口, mvt 的值只和这个窗口内的 ai 有关, 为什么这么说呢?将递归式拆开 :
mvtmvt1mvt2=(1decay)at+decaymvt1=(1decay)at1+decaymvt2=(1decay)at2+decaymvt3...

得到:
mvt=i=1tdecayti(1decay)ai

ti>C C 为某足够大的数时
decayti(1decay)ai0

, 所以:
mvti=tCtdecayti(1decay)ai
。即, mvt 的值只和 {atC,...,at} 有关。

tensorflow 中的 ExponentialMovingAverage

这时,再看官方文档中的公式:

shadowVariable=decayshadowVariable+(1decay)variable
,就知道各代表什么意思了。
shadow variables are created with trainable=False。用其来存放 ema 的值

import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)

with tf.control_dependencies([update]):
    #返回一个op,这个op用来更新moving_average,i.e. shadow value
    ema_op = ema.apply([w])#这句和下面那句不能调换顺序
# 以 w 当作 key, 获取 shadow value 的值
ema_val = ema.average(w)#参数不能是list,有点蛋疼

with tf.Session() as sess:
    tf.global_variables_initializer().run()
    for i in range(3):
        sess.run(ema_op)
        print(sess.run(ema_val))
# 创建一个时间序列 1 2 3 4
#输出:
#1.1      =0.9*1 + 0.1*2
#1.29     =0.9*1.1+0.1*3
#1.561    =0.9*1.29+0.1*4

你可能会奇怪,明明 只执行三次循环, 为什么产生了 4 个数?
这是因为,当程序执行到 ema_op = ema.apply([w]) 的时候,如果 wVariable, 那么将会用 w 的初始值初始化 ema 中关于 wema_value,所以 emaVal0=1.0 。如果 wTensor的话,将会用 0.0 初始化。

官网中的示例:

# Create variables.
var0 = tf.Variable(...)
var1 = tf.Variable(...)
# ... use the variables to build a training model...
...
# Create an op that applies the optimizer.  This is what we usually
# would use as a training op.
opt_op = opt.minimize(my_loss, [var0, var1])

# Create an ExponentialMovingAverage object
ema = tf.train.ExponentialMovingAverage(decay=0.9999)

# Create the shadow variables, and add ops to maintain moving averages
# of var0 and var1.
maintain_averages_op = ema.apply([var0, var1])

# Create an op that will update the moving averages after each training
# step.  This is what we will use in place of the usual training op.
with tf.control_dependencies([opt_op]):
    training_op = tf.group(maintain_averages_op)
    # run这个op获取当前时刻 ema_value
    get_var0_average_op = ema.average(var0)

使用 ExponentialMovingAveraged parameters

假设我们使用了ExponentialMovingAverage方法训练了神经网络, 在test阶段,如何使用 ExponentialMovingAveraged parameters呢? 官网也给出了答案
方法一:

# Create a Saver that loads variables from their saved shadow values.
shadow_var0_name = ema.average_name(var0)
shadow_var1_name = ema.average_name(var1)
saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1})
saver.restore(...checkpoint filename...)
# var0 and var1 now hold the moving average values

方法二:

#Returns a map of names to Variables to restore.
variables_to_restore = ema.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
...
saver.restore(...checkpoint filename...)

这里要注意的一个问题是,用于保存的saver可不能这么写,参考 http://blog.csdn.net/u012436149/article/details/56665612

参考资料

https://www.tensorflow.org/versions/master/api_docs/python/train/moving_averages

你可能感兴趣的:(tensorflow,tensorflow学习笔记)