由于想多分类中使用Diceloss,所以需要将[0,1,2,..N]类型的标签转化为onehot类型。
input数据类型: torch.LongTensor()
数据形状:[bs, 1, *] 可为2D或3D数据
def make_one_hot(input, num_classes):
"""Convert class index tensor to one hot encoding tensor.
Args:
input: A tensor of shape [bs, 1, *]
num_classes: An int of number of class
Returns:
A tensor of shape [bs, num_classes, *]
"""
shape = np.array(input.shape)
shape[1] = num_classes
shape = tuple(shape)
result = torch.zeros(shape)
result = result.scatter_(1, input.cpu(), 1)
return result
input数据类型: torch.LongTensor().cuda()
数据形状:[bs, 1, *] 可为2D或3D数据
def make_one_hot(input, num_classes):
"""Convert class index tensor to one hot encoding tensor.
Args:
input: A tensor of shape [bs, 1, *]
num_classes: An int of number of class
Returns:
A tensor of shape [bs, num_classes, *]
"""
shape = np.array(input.shape)
shape[1] = num_classes
shape = tuple(shape)
result = torch.zeros(shape).cuda()
result = result.scatter_(1, input, 1)
return result
1、FloatTensor转化为LongTensor:
# 此时的输入label为FloatTensor,可在cuda,也可是cpu
label_long = label.long()
2、 Tensor增加一个维度
label_onehot = label_onehot.unsqueeze(1) #在第一维增加一个维度
3、多分类交叉熵是不需要将标签转为onehot的
详情请查看 https://blog.csdn.net/longshaonihaoa/article/details/105253553
4、最近版pytorch有直接的转化为onehot的代码,了解之后更新。