关于RANSAC算法的基本思想,可从网上搜索找到,这里只是RANSAC用于SIFT特征匹配筛选时的一些说明。
RANSAC算法在SIFT特征筛选中的主要流程是:
(1) 从样本集中随机抽选一个RANSAC样本,即4个匹配点对
(2) 根据这4个匹配点对计算变换矩阵M
(3) 根据样本集,变换矩阵M,和误差度量函数计算满足当前变换矩阵的一致集consensus,并返回一致集中元素个数
(4) 根据当前一致集中元素个数判断是否最优(最大)一致集,若是则更新当前最优一致集
(5) 更新当前错误概率p,若p大于允许的最小错误概率则重复(1)至(4)继续迭代,直到当前错误概率p小于最小错误概率
下面结合RobHess的源码说明一下RANSAC算法在SIFT特征匹配筛选中的实现,
具体的源码分析见此系列文章:RobHess的SIFT源码分析:综述
在RobHess的源码中,RANSAC算法的声明和实现在xform.h和xform.c文件中
实现RANSAC算法的主函数是ransac_xform,如下:
CvMat* ransac_xform( struct feature* features, int n, int mtype,
ransac_xform_fn xform_fn, int m, double p_badxform,
ransac_err_fn err_fn, double err_tol,
struct feature*** inliers, int* n_in )
函数说明:利用RANSAC算法进行特征点筛选,计算出最佳匹配的变换矩阵 参数: features:特征点数组,只有当mtype类型的匹配点存在时才被用来进行单应性计算 n:特征点个数 mtype:决定使用每个特征点的哪个匹配域进行变换矩阵的计算,应该是FEATURE_MDL_MATCH, FEATURE_BCK_MATCH,FEATURE_MDL_MATCH中的一个。若是FEATURE_MDL_MATCH, 对应的匹配点对坐标是每个特征点的img_pt域和其匹配点的mdl_pt域, 否则,对应的匹配点对是每个特征点的img_pt域和其匹配点的img_pt域。 xform_fn:函数指针,指向根据输入的点对进行变换矩阵计算的函数,一般传入lsq_homog()函数 m:在函数xform_fn中计算变换矩阵需要的最小特征点对个数 p_badxform:允许的错误概率,即允许RANSAC算法计算出的变换矩阵错误的概率,当前计算出的模型的错误概率小于p_badxform时迭代停止 err_fn:函数指针,对于给定的变换矩阵,计算推定的匹配点对之间的变换误差,一般传入homog_xfer_err()函数 err_tol:容错度,对于给定的变换矩阵,在此范围内的点对被认为是内点 inliers:输出参数,指针数组,指向计算出的最终的内点集合,若为空,表示没计算出符合要求的一致集 此数组的内存将在本函数中被分配,使用完后必须在调用出释放:free(*inliers) n_in:输出参数,最终计算出的内点的数目 返回值:RANSAC算法计算出的变换矩阵,若为空,表示出错或无法计算出可接受矩阵
注释如下:
CvMat* ransac_xform( struct feature* features, int n, int mtype,
ransac_xform_fn xform_fn, int m, double p_badxform,
ransac_err_fn err_fn, double err_tol,
struct feature*** inliers, int* n_in )
{
//matched:所有具有mtype类型匹配点的特征点的数组,也就是样本集
//sample:单个样本,即4个特征点的数组
//consensus:当前一致集;
//consensus_max:当前最大一致集(即当前的最好结果的一致集)
struct feature** matched, ** sample, ** consensus, ** consensus_max = NULL;
struct ransac_data* rdata;//每个特征点的feature_data域的ransac数据指针
CvPoint2D64f* pts, * mpts;//每个样本对应的两个坐标数组:特征点坐标数组pts和匹配点坐标数组mpts
CvMat* M = NULL;//当前变换矩阵
//p:当前计算出的模型的错误概率,当p小于p_badxform时迭代停止
//in_frac:内点数目占样本总数目的百分比
double p, in_frac = RANSAC_INLIER_FRAC_EST;
//nm:输入的特征点数组中具有mtype类型匹配点的特征点个数
//in:当前一致集中元素个数
//in_min:一致集中元素个数允许的最小值,保证RANSAC最终计算出的转换矩阵错误的概率小于p_badxform所需的最小内点数目
//in_max:当前最优一致集(最大一致集)中元素的个数
//k:迭代次数,与计算当前模型的错误概率有关
int i, nm, in, in_min, in_max = 0, k = 0;
//找到特征点数组features中所有具有mtype类型匹配点的特征点,放到matched数组(样本集)中,返回值nm是matched数组的元素个数
nm = get_matched_features( features, n, mtype, &matched );
//若找到的具有匹配点的特征点个数小于计算变换矩阵需要的最小特征点对个数,出错
if( nm < m )
{ //出错处理,特征点对个数不足
fprintf( stderr, "Warning: not enough matches to compute xform, %s" \
" line %d\n", __FILE__, __LINE__ );
goto end;
}
/* initialize random number generator */
srand( time(NULL) );//初始化随机数生成器
//计算保证RANSAC最终计算出的转换矩阵错误的概率小于p_badxform所需的最小内点数目
in_min = calc_min_inliers( nm, m, RANSAC_PROB_BAD_SUPP, p_badxform );
//当前计算出的模型的错误概率,内点所占比例in_frac越大,错误概率越小;迭代次数k越大,错误概率越小
p = pow( 1.0 - pow( in_frac, m ), k );
i = 0;
//当前错误概率大于输入的允许错误概率p_badxform,继续迭代
while( p > p_badxform )
{
//从样本集matched中随机抽选一个RANSAC样本(即一个4个特征点的数组),放到样本变量sample中
sample = draw_ransac_sample( matched, nm, m );
//从样本中获取特征点和其对应匹配点的二维坐标,分别放到输出参数pts和mpts中
extract_corresp_pts( sample, m, mtype, &pts, &mpts );
//调用参数中传入的函数xform_fn,计算将m个点的数组pts变换为mpts的矩阵,返回变换矩阵给M
M = xform_fn( pts, mpts, m );//一般传入lsq_homog()函数
if( ! M )//出错判断
goto iteration_end;
//给定特征点集,变换矩阵,误差函数,计算出当前一致集consensus,返回一致集中元素个数给in
in = find_consensus( matched, nm, mtype, M, err_fn, err_tol, &consensus);
//若当前一致集大于历史最优一致集,即当前一致集为最优,则更新最优一致集consensus_max
if( in > in_max )
{
if( consensus_max )//若之前有最优值,释放其空间
free( consensus_max );
consensus_max = consensus;//更新最优一致集
in_max = in;//更新最优一致集中元素个数
in_frac = (double)in_max / nm;//最优一致集中元素个数占样本总个数的百分比
}
else//若当前一致集小于历史最优一致集,释放当前一致集
free( consensus );
cvReleaseMat( &M );
iteration_end:
release_mem( pts, mpts, sample );
p = pow( 1.0 - pow( in_frac, m ), ++k );
}
//根据最优一致集计算最终的变换矩阵
/* calculate final transform based on best consensus set */
//若最优一致集中元素个数大于最低标准,即符合要求
if( in_max >= in_min )
{
//从最优一致集中获取特征点和其对应匹配点的二维坐标,分别放到输出参数pts和mpts中
extract_corresp_pts( consensus_max, in_max, mtype, &pts, &mpts );
//调用参数中传入的函数xform_fn,计算将in_max个点的数组pts变换为mpts的矩阵,返回变换矩阵给M
M = xform_fn( pts, mpts, in_max );
/***********下面会再进行一次迭代**********/
//根据变换矩阵M从样本集matched中计算出一致集consensus,返回一致集中元素个数给in
in = find_consensus( matched, nm, mtype, M, err_fn, err_tol, &consensus);
cvReleaseMat( &M );
release_mem( pts, mpts, consensus_max );
//从一致集中获取特征点和其对应匹配点的二维坐标,分别放到输出参数pts和mpts中
extract_corresp_pts( consensus, in, mtype, &pts, &mpts );
//调用参数中传入的函数xform_fn,计算将in个点的数组pts变换为mpts的矩阵,返回变换矩阵给M
M = xform_fn( pts, mpts, in );
if( inliers )
{
*inliers = consensus;//将最优一致集赋值给输出参数:inliers,即内点集合
consensus = NULL;
}
if( n_in )
*n_in = in;//将最优一致集中元素个数赋值给输出参数:n_in,即内点个数
release_mem( pts, mpts, consensus );
}
else if( consensus_max )
{ //没有计算出符合要求的一致集
if( inliers )
*inliers = NULL;
if( n_in )
*n_in = 0;
free( consensus_max );
}
//RANSAC算法结束:恢复特征点中被更改的数据域feature_data,并返回变换矩阵M
end:
for( i = 0; i < nm; i++ )
{
//利用宏feat_ransac_data来提取matched[i]中的feature_data成员并转换为ransac_data格式的指针
rdata = feat_ransac_data( matched[i] );
//恢复feature_data成员的以前的值
matched[i]->feature_data = rdata->orig_feat_data;
free( rdata );//释放内存
}
free( matched );
return M;//返回求出的变换矩阵M
}
实验测试:
//特征提取和匹配
void match(IplImage *img1,IplImage *img2)
{
IplImage *img1_Feat = cvCloneImage(img1);//复制图1,深拷贝,用来画特征点
IplImage *img2_Feat = cvCloneImage(img2);//复制图2,深拷贝,用来画特征点
struct feature *feat1, *feat2;//feat1:图1的特征点数组,feat2:图2的特征点数组
int n1, n2;//n1:图1中的特征点个数,n2:图2中的特征点个数
struct feature *feat;//每个特征点
struct kd_node *kd_root;//k-d树的树根
struct feature **nbrs;//当前特征点的最近邻点数组
int matchNum;//经距离比值法筛选后的匹配点对的个数
struct feature **inliers;//精RANSAC筛选后的内点数组
int n_inliers;//经RANSAC算法筛选后的内点个数,即feat1中具有符合要求的特征点的个数
//默认提取的是LOWE格式的SIFT特征点
//提取并显示第1幅图片上的特征点
n1 = sift_features( img1, &feat1 );//检测图1中的SIFT特征点,n1是图1的特征点个数
export_features("feature1.txt",feat1,n1);//将特征向量数据写入到文件
draw_features( img1_Feat, feat1, n1 );//画出特征点
cvShowImage("img1_Feat",img1_Feat);//显示
//提取并显示第2幅图片上的特征点
n2 = sift_features( img2, &feat2 );//检测图2中的SIFT特征点,n2是图2的特征点个数
export_features("feature2.txt",feat2,n2);//将特征向量数据写入到文件
draw_features( img2_Feat, feat2, n2 );//画出特征点
cvShowImage("img2_Feat",img2_Feat);//显示
Point pt1,pt2;//连线的两个端点
double d0,d1;//feat1中每个特征点到最近邻和次近邻的距离
matchNum = 0;//经距离比值法筛选后的匹配点对的个数
//将2幅图片合成1幅图片,上下排列
stacked = stack_imgs( img1, img2 );//合成图像,显示经距离比值法筛选后的匹配结果
stacked_ransac = stack_imgs( img1, img2 );//合成图像,显示经RANSAC算法筛选后的匹配结果
//根据图2的特征点集feat2建立k-d树,返回k-d树根给kd_root
kd_root = kdtree_build( feat2, n2 );
//遍历特征点集feat1,针对feat1中每个特征点feat,选取符合距离比值条件的匹配点,放到feat的fwd_match域中
for(int i = 0; i < n1; i++ )
{
feat = feat1+i;//第i个特征点的指针
//在kd_root中搜索目标点feat的2个最近邻点,存放在nbrs中,返回实际找到的近邻点个数
int k = kdtree_bbf_knn( kd_root, feat, 2, &nbrs, KDTREE_BBF_MAX_NN_CHKS );
if( k == 2 )
{
d0 = descr_dist_sq( feat, nbrs[0] );//feat与最近邻点的距离的平方
d1 = descr_dist_sq( feat, nbrs[1] );//feat与次近邻点的距离的平方
//若d0和d1的比值小于阈值NN_SQ_DIST_RATIO_THR,则接受此匹配,否则剔除
if( d0 < d1 * NN_SQ_DIST_RATIO_THR )
{ //将目标点feat和最近邻点作为匹配点对
pt1 = Point( cvRound( feat->x ), cvRound( feat->y ) );//图1中点的坐标
pt2 = Point( cvRound( nbrs[0]->x ), cvRound( nbrs[0]->y ) );//图2中点的坐标(feat的最近邻点)
pt2.y += img1->height;//由于两幅图是上下排列的,pt2的纵坐标加上图1的高度,作为连线的终点
cvLine( stacked, pt1, pt2, CV_RGB(255,0,255), 1, 8, 0 );//画出连线
matchNum++;//统计匹配点对的个数
feat1[i].fwd_match = nbrs[0];//使点feat的fwd_match域指向其对应的匹配点
}
}
free( nbrs );//释放近邻数组
}
qDebug()<x), cvRound(feat->y));//图1中点的坐标
pt2 = Point(cvRound(feat->fwd_match->x), cvRound(feat->fwd_match->y));//图2中点的坐标(feat的匹配点)
qDebug()<<"("<("<height;//由于两幅图是上下排列的,pt2的纵坐标加上图1的高度,作为连线的终点
cvLine(stacked_ransac,pt1,pt2,CV_RGB(255,0,255),1,8,0);//画出连线
}
cvNamedWindow(IMG_MATCH2);//创建窗口
cvShowImage(IMG_MATCH2,stacked_ransac);//显示
}
结果:
RANSAC筛选前
RANSAC筛选后
RANSAC筛选前 RANSAC筛选后
RANSAC筛选前
RANSAC筛选后
RANSAC筛选前 RANSAC筛选后
RANSAC筛选前
RANSAC筛选后
RANSAC筛选前
RANSAC筛选后
RANSAC筛选前 RANSAC筛选后
RANSAC筛选前 RANSAC筛选后
RANSAC筛选前 RANSAC筛选后
RANSAC筛选前
RANSAC筛选后
RANSAC筛选前
RANSAC筛选后
RANSAC筛选前
RANSAC筛选后
参考
利用RANSAC算法筛选SIFT特征匹配
你可能感兴趣的:(OpenCV,计算机视觉)
Python从0到100(七十三):Python OpenCV-OpenCV实现手势虚拟拖拽
是Dream呀
python opencv 开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
opencv依赖的lib名称
苏三福
opencv
#依赖的lib名称OPENCV_LIB=-lopencv_dnn-lopencv_flann-lopencv_videoio-lopencv_videostab-lopencv_superres-lopencv_video-lopencv_ml-lopencv_photo-lopencv_shape-lopencv_stitching-lopencv_calib3d-lopencv_feature
ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
ai照片放大python源码_AI新时代-大牛教你使用python+Opencv完成人脸解锁(附源码)...
weixin_39639505
ai照片放大python源码
好吧,伙计们,我回来了。说我拖更不写文章的可以过来用你的小拳拳狠命地捶我胸口....那么今天我们来讲关于使用python+opencv+face++来实现人脸验证及人脸解锁。代码量同样不多,你可以将这些代码运用在其它一些智能领域,如智能家居,进门的时候判断你是谁,也可以加入机器学习判断来的人是客人还是熟人。在讲之前我们会先适当的拓扑一下关于人脸识别的知识点。OK废话少说下面开始正是话题。解锁原理:
美图鉴赏-古风,OpenCV视频批量处理
图苑
java 图像处理 AIGC opencv
publicstaticvoidmixBatch(StringoutputPath,ListvideoList,intclipDuration,intnumber,intmergeDuration,ProgressCallbackcallback)throwsException{//临时裁剪文件夹StringclipTempDir=outputPath+File.separator+"_clipT
使用QT+OpenCV+C++完成一个简单的图像处理工具
17´
机器视觉 Qt c++ qt opencv c++ 图像处理
目录前言初始化UI界面qss样式表优化界面QImage和Mat的类型转换按钮功能实现读取图像处理图像保存图像最终效果前言本项目在QtCreator中编写,使用qmake来配置OpenCV库,具体配置方法请看这篇文章从0到机器视觉工程师(六):配置OpenCV和Qt环境-CSDN博客,UI界面使用代码的形式书写。接下来,让我们一起来完成这个项目吧。初始化UI界面代码boolMainWindow::I
【论文投稿】探秘计算机视觉算法:开启智能视觉新时代
小周不想卷
艾思科蓝学术会议投稿 计算机视觉
目录引言一、计算机视觉算法基石:图像基础与预处理二、特征提取:视觉信息的精华萃取三、目标检测:从图像中精准定位目标四、图像分类:识别图像所属类别五、语义分割:理解图像的像素级语义六、计算机视觉算法前沿趋势与挑战引言在当今数字化浪潮中,计算机视觉宛如一颗璀璨的明珠,正深刻地改变着我们与世界的交互方式。从安防监控中的精准识别,到自动驾驶汽车的智能导航;从医疗影像的辅助诊断,到工业生产中的缺陷检测,计算
使用Llama 3.2-Vision多模态LLM与您的图像聊天
AI程序猿人
llama transformer pytorch 深度学习 大模型应用 人工智能 大模型
介绍将视觉能力与大型语言模型(LLMs)结合的多模态LLM(MLLM)正在通过多模态LLM革命性地改变计算机视觉领域。这些模型结合了文本和视觉输入,展示了在图像理解和推理方面的出色能力。虽然这些模型以前只能通过API访问,但最近的开源选项现在允许本地执行,使其在生产环境中更具吸引力。在此教程中,我们将学习如何使用开源的Llama3.2-Vision模型与图像进行聊天,你会对其OCR、图像理解和推理
AI大模型如何赋能电商行业,引领变革
虞书欣的C
人工智能 开发语言
•个性化推荐:利用机器学习算法分析用户的历史购买记录、浏览行为和喜好,生成个性化的产品推荐列表,提升用户的购买意愿和满意度。•优化用户体验:•智能搜索引擎:运用自然语言处理技术,优化搜索引擎,让用户能够通过自然语言进行搜索。•虚拟客服:通过聊天机器人和语音助手,提供24/7的客户支持,快速解答用户咨询。•图像识别:利用计算机视觉技术,用户可以通过拍照识别商品,快速找到相似商品或进行排版搭配推荐。•
4.opencv函数--cv2.findContours
xf8964
openCV openCV python findContours
该函数是查找图片轮廓,函数接收二值图片,函数原型cv2.findContours(image,mode,method,contours=None,hierarchy=None,offset=None)参数说明:image:原图mode:轮廓的检索模式,有四种,常用的是cv2.RETR_EXTERNAL枚举说明cv2.RETR_EXTERNAL表示只检测外轮廓cv2.RETR_LIST检测的轮廓不建
3d系统误差分析
Ai智享
结构光 3d 数码相机 计算机视觉
系统标定重投影误差预估在计算机视觉和三维重建领域中,评估一个相机系统标定精度的重要指标。通过比较真实的三维点在图像中的投影位置与标定模型计算出的投影位置之间的差异,来衡量标定的准确性。以下是对这一概念的详细解析:什么是系统标定?系统标定(SystemCalibration)是指对一个视觉系统(例如单目相机、双目相机系统或结构光系统)进行参数标定的过程,包括:内参标定:相机的内部参数(如焦距、光心、
YOLOv8与Transformer:探索目标检测的新架构
AI架构设计之禅
AI大模型应用入门实战与进阶 大数据AI人工智能 计算科学 神经计算 深度学习 神经网络 大数据 人工智能 大型语言模型 AI AGI LLM Java Python 架构设计 Agent RPA
YOLOv8与Transformer:探索目标检测的新架构关键词:目标检测,深度学习,YOLOv8,Transformer,计算机视觉,卷积神经网络摘要:目标检测是计算机视觉领域的一项重要任务,其目标是从图像或视频中识别和定位特定对象。近年来,YOLO(YouOnlyLookOnce)系列算法以其高精度和高速度成为目标检测领域的佼佼者。最新版本的YOLOv8引入了Transformer架构,进一步
基于Spring Boot和Vue的人脸识别项目(源码)
AI人H哥会Java
JAVA大作业项目实战 spring boot vue.js java 人工智能 计算机视觉 后端 sql
背景随着人工智能技术的迅猛发展,生物识别技术的迅猛发展,人脸识别已经成为最具潜力的人工智能应用之一。它不仅在安全监控、金融支付、智能家居等多个领域得到了广泛应用,也逐渐进入日常生活场景。人脸识别作为一种生物特征识别技术,能够通过分析人脸图像中的特征点,实现对个体的身份识别。利用计算机视觉技术,系统能够快速从大量图片中定位并识别特定人脸,实现身份验证和信息检索。这一技术的应用,不仅提高了安全性,还提
图像生成大模型:Imagen 详解
转角再相遇
imagen python 深度学习 计算机视觉
近年来,图像生成技术取得了显著进展,推动了计算机视觉和生成对抗网络(GAN)等领域的发展。Imagen是一个新兴的图像生成大模型,其在生成高质量、逼真图像方面表现出色。本文将详细讲解Imagen的基本原理、架构、训练流程及应用场景。1.Imagen的基本原理1.1什么是Imagen?Imagen是一种基于深度学习的图像生成模型,结合了自注意力机制(Self-attentionMechanism)和
计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)
ZhShy23
javascript 深度学习
在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交通系统等领域有着广泛的应用前景。本文将介绍如何使用MATLAB和深度学习技术,特别是FasterR-CNN模型,来训练一个车辆检测器。文章目录一
OpenCV计算机视觉 08 图像的旋转
伊一大数据&人工智能学习日志
OpenCV 计算机视觉 人工智能 计算机视觉 opencv
图像的旋转下面是一张小猪佩奇的照片,请进行顺时针90度,逆时针90度,180度旋转方法一:使用了NumPy库的np.rot90()函数来实现图像的旋转np.rot90(img,k=-1)表示将输入的图像img顺时针旋转90度,np.rot90(img,k=1)表示将图像逆时针旋转90度。importcv2importnumpyasnp#导入原图img=cv2.imread('小猪佩奇.png')
详解AI大模型的主要指标与国内常见大模型对比分析
wit_@
人工智能 AIGC 语言模型 ai 大数据 服务器
AI大模型的主要指标与国内常见大模型对比分析随着人工智能技术的快速发展,大模型(LargeAIModels)在自然语言处理、计算机视觉和多模态任务中取得了突破性进展。对于选择和评价AI大模型,不仅需要关注其功能,还要理解其关键指标和性能表现。本文将详细分析AI大模型的主要评价指标,并对国内常见大模型进行具体对比,提供实际数值和深度解析。一、AI大模型的主要指标AI大模型的性能和实用性通常通过以下指
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnn python 机器学习 深度学习 scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
chatgpt赋能python:Python群发微信消息:解决方案
suimodina
ChatGpt python chatgpt 微信 计算机
Python群发微信消息:解决方案肆无忌惮的群发微信消息,是否是你目前所需的解决方案?如果是,那么你来对地方了。Python是一门十分强大的编程语言,广泛用于各种人工智能、计算机视觉、机器学习等领域。Python可以用于开发各种应用程序,它也可以用于批量处理和发送微信消息。本文将概述如何用Python发送微信消息。我们将介绍用Python实现微信消息的流程和步骤,并提供一些有关如何使用Python
人工智能OpenCV计算机视觉技术
yzx991013
OpenCV基础全集 opencv 计算机视觉 人工智能
5.3cand可调节边缘检测完整代码:importcv2importnumpyasnp#载入图像,并处理可能的读取错误img_original=cv2.imread('./image/lena.jpg')ifimg_originalisNone:print("无法读取图像文件")raiseSystemExit#创建可调整大小的窗口cv2.namedWindow('Canny',cv2.WINDOW
在Pycharm中安装Cv2
Rverdoser
pycharm ide python
在PyCharm中安装cv2(即OpenCV库),你可以使用pip包管理器。以下是步骤和示例代码:1.打开PyCharm。2.确保你的项目解释器已经设置。在PyCharm的右下角可以看到当前使用的解释器。3.点击解释器名称(通常是解释器路径的一部分),然后选择"ShowAll"。4.在弹出的解释器列表中,选择你想要安装cv2的解释器。5.点击加号按钮(或者"+"按钮),然后选择"InstallPa
基于深度学习CNN网络 mini-xception网络实现 构建一个完整的人脸表情检测_识别分类系统,包括训练、评估、前端和服务端代码
计算机c9硕士算法工程师
卷积神经网络 深度学习 cnn 分类
人脸表情检测该项目已训练好网络模型,配置好环境即可运行使用,效果见图像,实现图像识别、摄像头识别、摄像头识别/识别分类项目-说明文档-UI界面-cnn网络项目基本介绍:【网络】深度学习CNN网络mini-xception网络【环境】python>=3.5tensorflow2opencvpyqt5【文件】训练预测全部源代码、训练好的模型、fer2013数据集、程序算法讲解文档【类别】对7种表情检测
从点云中剔除遮挡点
AuSwift
点云
在三维计算机视觉和点云处理中,点云是由大量的三维点组成的数据集。然而,有时候点云中的某些点可能会被其他物体所遮挡,这可能会对进一步的分析和处理造成困扰。本文将介绍如何使用MATLAB从点云中移除这些遮挡点。在开始之前,请确保你已经安装了MATLAB和PointCloudProcessingToolbox。接下来,我们将按照以下步骤进行操作。步骤1:加载点云数据首先,我们需要加载点云数据。假设我们的
emgu.cv读取1080p视频
zhangxiaomm
音视频
以前一直是用c++的opencv读取视频,最近的项目改用emgu.cv读取视频,摄像头为顺华利1080p的小探测器。这个小摄像头直接获取帧频是60,最大分辨率是1920*1080遇到的几个问题记录如下:1直接读取默认图像为640*480.读取视频采用cap=newCapture(0);可以读取计算机自带的摄像头,外置的1080p摄像头id号为1,直接采用cap=newCapture(1);读取,读
Emgu.CV 报错 Emgu.CV.Util.CvException: OpenCV
Echo_Wish
C#笔记 OpenCV opencv 计算机视觉 人工智能
Emgu.CV报错Emgu.CV.Util.CvException:OpenCV异常信息:Emgu.CV.Util.CvException:OpenCV:在Emgu.CV.CvInvoke.CvErrorHandler(Int32status,IntPtrfuncName,IntPtrerrMsg,IntPtrfileName,Int32line,IntPtruserData)在Emgu.CV.C
【cs.CV】25.1.14 arxiv更新速递
hinmer
CV每日更新 arxiv chatgpt gpt 人工智能 自然语言处理 自动驾驶 计算机视觉 ai
【cs.CV】25.1.14arxiv更新110篇—第1篇----=====Omni-RGPT:UnifyingImageandVideoRegion-levelUnderstandingviaTokenMarks关键词:计算机视觉,多模态大语言模型,区域级理解,TokenMark,视频理解链接1摘要:我们提出了Omni-RGPT,这是一种多模态大型语言模型,旨在促进图像和视频的区域级理解。为了在
OpenCV03-高级-滤波与增强
坐吃山猪
OpenCV opencv 计算机视觉 人工智能
OpenCV03-高级-滤波与增强文章目录OpenCV03-高级-滤波与增强1-OpenCV平滑滤波1.均值滤波(`cv2.blur()`)2.高斯滤波(`cv2.GaussianBlur()`)3.中值滤波(`cv2.medianBlur()`)4.双边滤波(`cv2.bilateralFilter()`)总结2-OpenCV边缘检测1.Sobel算子(`cv2.Sobel()`)2.Canny
PCL 点云高程渲染:实现点云高程信息的颜色渲染
技术征服冒险
PCL
PCL点云高程渲染:实现点云高程信息的颜色渲染点云渲染在计算机视觉和图形学中具有重要的应用价值。在处理点云数据时,一种常见的需求是通过将高程信息映射到颜色空间,以实现对点云的可视化。本文将介绍如何使用PCL(PointCloudLibrary)库实现点云的高程渲染,并提供相应的源代码。引言在开始之前,我们首先需要了解点云的基本概念。点云是由大量的三维点组成的数据集合,每个点都具有X、Y和Z坐标。点
全新 Hopper 架构的Transformer 引擎有什么特点?
扫地的小何尚
人工智能
Transformer引擎是全新Hopper架构的一部分,将显著提升AI性能和功能,并助力在几天或几小时内训练大型模型。Transformer模型是当今广泛使用的语言模型(例如asBERT和GPT-3)的支柱。Transformer模型最初针对自然语言处理用例而开发,但因其通用性,现在逐步应用于计算机视觉、药物研发等领域。与此同时,模型大小不断呈指数级增长,现在已达到数万亿个参数。由于计算量巨大,
Kotlin Bytedeco OpenCV 图像图像55 图像透视变换
深色風信子
kotlin opencv 透视变换 bytedeco
KotlinBytedecoOpenCV图像图像53图像透视变换1添加依赖2测试代码3测试结果1添加依赖4.0.0com.xuKotlinOpenCV1.02.0.0UTF-8official1.8mavenCentralhttps://repo1.maven.org/maven2/cn.hutoolhutool-all5.8.29org.apache.commonscommons-compres
Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取 HtmlExtractor 精准抽取 信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
java编程思想 -- 多态
百合不是茶
java 多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
[自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
storm 自定义 日志文件
商人shang
storm cluster logback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
php 文件操作
aichenglong
PHP 读取文件 写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
MySQL的btree索引和hash索引的区别
AILIKES
数据结构 mysql 算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
TDD实践(二)
bijian1013
java TDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
[MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
java 线程弹球小游戏
CrazyMizzz
java 游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
hadoop jps出现process information unavailable提示解决办法
daizj
hadoop jps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
ios UILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
完全手动建立maven骨架
eksliang
java eclipse Web
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
简单工厂设计模式
hm4123660
java 工厂设计模式 简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
map hbase reduce Hfile path实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
jsp web tomcat 编码问题
王新春
tomcat jsp pageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi